Blog
Community
Chat
Question
Equation
Paper
Search
AI Apps Search
AI Agent Search
Robot Search
Equation Search
Agent
MCP Tool Use
Doc
AI Agent Marketplace
MCP Marketplace
AI Agent Datasets
AI Store
AI Agent Marketplace
MCP Server Marketplace
Top Apps
Compare Apps
Workspace
Billing
Create AI Service
AI Courses
AIGC Chart
AI Writer
Dialogue Visualization
Agent Visualization
Equation Latex
About
Register
Login
# Public AI Agent Datasets Dialogue, Function Call, MCP Tool Use, Reinforcement Learning DeepNLP provides various datasets services to help AI developers, researchers and practitioners to increase the accuracies of their AI Agent and LLM applications, covering various tasks such as text generation, reasoning, Function Calling or Tool Use, LLM, Reinforcement Learning. We mainly foucs on collecting high quality users' genuine queries or intents rather than synthetic data. Some of the datasets are free and some of them need to consume pre-paid credits. Visit Our AI Store Dataset Tab to Select https://www.deepnlp.org/store/dataset ## 1. Dataset Features **Genuinue Users' Queries**: Most of the high quality datasets are collected from query logs of our live AI Agents, such as MCP Tool Use Agent (https://agent.deepnlp.org/agent/mcp_tool_use) and others. **Function Call and MCP Servers Support**: The datasets covers wide range of MCP servers from the OpenMCP Marketplace and Playgrounds. **Users Action and Humans' Feedback**: Users' actual feedbacks are crucial in improving the AI Agents training process. We collects users' genuine actions, such as ACCEPT/REJECT in confirming the function call results, Upvote/Downvote action of the final responses, and many other users' feedback on clickable elements. **Various Domains and Tasks**: We covers 40+ categories of AI agents' tool use scenarios, ranging from information seeking (AI search, map search, etc) to autonomous AI agents browser use, Data Analysis, Excel Spreadsheet and Powerpoint creation and generation, etc. ## 2. Dataset Introduction We are providing main below types of AI agents datasets in List of Messages Json Formats and scalar data such as rewards, etc. | Dataset Name | Description | User Feedback | Demo Dataset Link | Full DataSet Download | | --- | --- | ---- |-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------| | Multi-Turn Dialogue of Tool Use | The multi-turn dialogue is list of messages formats, Useful for AI Search/Deep Research/Map/Financial Data/etc | NA | - | - | | Reinforcement Learning | We collect the session of user and assistant multi-dialogues and users' feedback as rewards in this session, such click of confirmation (Accept/Reject), Upvote, Downvote on the responses, etc. | YES | - | - | | Function Calling/Tool Use | The Datasets of Functions Calls takes **messages** and **tools** as input and output the choosen **tool_call** result indicating which tool to use and the arguments. The datasets are collecte from calling SOTA LLM such as GPT, OpenAI o-series, Claude, Qwen, Kimi, etc. | No | [Download](https://www.deepnlp.org/store/dataset/dataset/pub-mcptoolbench/ai-agent-function-call-mcp-multi-turn-dataset-demo) | [Download](https://www.deepnlp.org/store/dataset/dataset/pub-mcptoolbench/ai-agent-function-call-mcp-multi-turn-dataset) | ### Multi-Turn Dialogue of Tool Use Dataset | KEY | Type |Description | | ---- | ---- | --- | | messages | List of Json Object | Dialogue Messages | This data instances indicates a multi-turn dialogues of users' calling Google Maps "get_weather" tool to know the recent weather in San Francisco. The dialogues contains three messages: User: query Assitant: function call resuslt: Users' actual function call running results. ``` [ { "role": "user", "content": "What is the weather like in San Francisco?" }, { "role": "assistant", "content": [ { "type": "text", "text": "I need to use get_weather, and the user wants SF, which is likely San Francisco, CA." }, { "type": "tool_use", "id": "toolu_01A09q90qw90lq917835lq9", "name": "get_weather", "input": { "location": "San Francisco, CA", "unit": "celsius" } } ] }, { "role": "user", "content": [ { "type": "tool_result", "tool_use_id": "toolu_01A09q90qw90lq917835lq9", "content": "15 degrees" } ] } ] ``` Note that the function call comes in different formats when calling various models. We are mainly collecting in the OpenAI and anthroupic function calling formats. We supported both and you can see the differences from the offical documentations. **Multi-modal and Files** formats are also attached: The images and raw descriptions of the files such as path are also attached for context variables.  **OpenAI/Qwen/etc Function Call Formats** ``` { "tool_call": { "id": "call_d6f4ed29ce614390b99a05", "function": { "arguments": "{\"url\": \"https://www.stackoverflow.com\", \"browserType\": \"chromium\"}", "name": "playwright_navigate" }, "type": "function", "index": 0 } } ``` **Anthroupic Tool Use Formats** ``` { "type": "tool_use", "id": "toolu_01A09q90qw90lq917835lq9", "name": "get_weather", "input": { "location": "San Francisco, CA", "unit": "celsius" } } ``` ### Reinforcement Learning Dataset We collect users' positive and negative feedbacks on the AI Agent workflow. **Positive feedback** include the click on the ACCEPT button of the function call results and 'Upvote' button clicks. We set rewards as 1.0, and use "reward_description" field to include detailed introduction of their actions. **Negative feedback** include the click on the REJECT button of the function call results and 'Downvote' button clicks. We set rewards as -1.0. | KEY | Type |Description | | ---- | ---- | --- | | messages | List of Json Object | Dialogue Messages | | reward | scalar | 1.0 for positive feedback and -1.0 for negative feedback | | reward_description | string | details description of the action, such as ACCEPT/REJECT,UPVOTE,DOWNVOTE, etc |  #### Positive Reward = 1.0 Example In this financial data checking scenarios, users' clicks on the ACCEPT to confirm the function calls of tool 'get_stock_price_global_market' and parameters "{\"symbol_list\": [\"MSFT\", \"NVDA\"], \"market\": \"US\"}" form server finance-agent-mcp-server. ``` { "messages": [{ "role": "user", "content": "Find the Microsoft and Nvidia Stock Price and Market Cap. Who has higher market cap today?" }, { "role": "assistant", "content": "
Finding Relevant Tools Using Queries:
find
market cap
compare
stock
and
finance data
market
\r
Relevant MCP Servers:
\r
Relevant Tools:
GetAwsSolutionsConstructPattern
SearchGenAICDKConstructs
LambdaLayerDocumentationProvider
pay_order
create_refund
get_refund
sequentialthinking
get_stock_price_global_market
read_documentation
search_documentation
recommend
brave_local_search
firecrawl_scrape
firecrawl_search
firecrawl_extract
firecrawl_deep_research
list_directory
list_directory_with_sizes
move_file
tavily_map
| \n
\n
\n
\u25b6
\n
Call Tool get_stock_price_global_market of Server finance-agent-mcp-server
\n
\n
\n
Parameters
{\n \"market\": \"US\",\n \"symbol_list\": [\n \"MSFT\",\n \"NVDA\"\n ]\n}
\n
\n
\n
\n
\n
Results
\n
\n
\n\n|Searching MCP Marketplace Tools and Servers", "context": "{\"tool_id\": \"call_45853133e9a84899adcbb3\", \"tool_name\": \"get_stock_price_global_market\", \"tool_arguments\": {\"symbol_list\": [\"MSFT\", \"NVDA\"], \"market\": \"US\"}, \"toolname_to_server_dict\": {\"GetAwsSolutionsConstructPattern\": [\"awslabs.cdk-mcp-server\"], \"SearchGenAICDKConstructs\": [\"awslabs.cdk-mcp-server\"], \"LambdaLayerDocumentationProvider\": [\"awslabs.cdk-mcp-server\"], \"pay_order\": [\"paypal\"], \"create_refund\": [\"paypal\"], \"get_refund\": [\"paypal\"], \"sequentialthinking\": [\"sequential-thinking\"], \"get_stock_price_global_market\": [\"finance-agent-mcp-server\"], \"read_documentation\": [\"awslabs.aws-documentation-mcp-server\"], \"search_documentation\": [\"awslabs.aws-documentation-mcp-server\"], \"recommend\": [\"awslabs.aws-documentation-mcp-server\"], \"brave_local_search\": [\"brave-search\"], \"firecrawl_scrape\": [\"firecrawl-mcp\"], \"firecrawl_search\": [\"firecrawl-mcp\"], \"firecrawl_extract\": [\"firecrawl-mcp\"], \"firecrawl_deep_research\": [\"firecrawl-mcp\"], \"list_directory\": [\"filesystem\"], \"list_directory_with_sizes\": [\"filesystem\"], \"move_file\": [\"filesystem\"], \"tavily_map\": [\"tavily-remote-mcp\"]}}" }, { "role": "user", "content": "
ACCEPT
" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_45853133e9a84899adcbb3", "type": "tool_use", "function": { "name": "get_stock_price_global_market", "arguments": "{\"symbol_list\": [\"MSFT\", \"NVDA\"], \"market\": \"US\"}" } }] }, { "role": "tool", "tool_call_id": "call_45853133e9a84899adcbb3", "name": "get_stock_price_global_market", "content": "[{\"avg_price\": \"517.10 USD\", \"high\": \"522.82 USD\", \"low\": \"514.02 USD\", \"symbol\": \"MSFT\", \"update_time\": \"\", \"previous_close\": \"520.17 USD\", \"change\": \"-3.07\", \"market_capitalization\": \"3.84T USD\", \"pe_ratio\": \"37.98\", \"data_source\": \"morningstar.com\", \"source_url\": \"https://www.morningstar.com/stocks/xnas/msft/quote\"}, {\"avg_price\": \"182.01 USD\", \"high\": \"182.94 USD\", \"low\": \"180.59 USD\", \"symbol\": \"NVDA\", \"update_time\": \"\", \"previous_close\": \"180.45 USD\", \"change\": \"+1.56\", \"market_capitalization\": \"4.44T USD\", \"pe_ratio\": \"57.04\", \"data_source\": \"morningstar.com\", \"source_url\": \"https://www.morningstar.com/stocks/xnas/nvda/quote\"}]" }, { "role": "system", "content": "\n \n **Background**\n You are an AI Agent expert good at generating answers given users' original query and related context information, such as web pages search result, tool function call results, etc.\n\n **Tasks**:\n - Analyse User's query and consider current date, current time and users' location (country, city, district) if provided\n - Identify the language of user's original query and generate the answers using the same language, such as English, Chinese, French, Russion, etc.\n - Identify the expected output content-type of the answers, choose from \"text/markdown\", \"text/html\", \"application/code\", with default to \"text/html\". If users want you to generate a code with explanation, use mixed content type for different sections, \"application/code\" and \"text/markdown\".\n - Output detailed response to answer users' original question directly, without the thinking process. Please include the necessary information.\n - Coding or Math: If users' query is to write codes or math formula, please generate the code in the first place. Secondly, generate a few points describing the meanings of the main functions or changes.\n - MCP Tool Use or Function Call: Answer Users' questions using the mcp or function call results. Please include all the result information such as the weather forecast for all 3 days, etc.\n - Citation and Data Sources: If the results contains URL of sources and citations, remember to include the main text in plan htmlp a tag, such as
{citation_name}
\n\n **Output Format**:\n - The output consists of multiple sections. Each section begins with a content type field describing the content-type of the paragraph and then the main content.\n\n **Example**:\n **User Query**:\n Please generate a python code of adding two numbers\n **Output**:\n
application/code
\n ```\n def add(a, b):\n return a + b\n ```\n
text/markdown
\n ### Description\n This function takes two numbers and output the sum.\n" }, { "role": "user", "content": " \n **Context Variables**\n Datetime: 2025-08-19 10:08:17 CST (Asia/Shanghai)\n User Location: \n **User Query**\n
ACCEPT
\n" }], "reward": 1.0, "reward_description": "ACCEPT" } ``` #### Negative Reward = -1.0 Example User is not satisfied with "firecrawl_search" results and clicks on the downvote button. ``` { "messages": [{ "role": "user", "content": "Latest AI Company Research News" }, { "role": "assistant", "content": "
Finding Relevant Tools Using Queries:
company
latest
AI news
ai
artificial intelligence
technology trends
research updates
\r
Relevant MCP Servers:
\r
Relevant Tools:
firecrawl_search
firecrawl_extract
firecrawl_deep_research
get_pricing
generate_cost_report
get_pricing_service_codes
get_pricing_attribute_values
get_price_list_urls
sequentialthinking
get_notification_details
get_stock_price_global_market
tavily_search
ExplainCDKNagRule
CheckCDKNagSuppressions
SearchGenAICDKConstructs
show_subscription_plan_details
show_subscription_details
get_order
accept_dispute_claim
get_refund
| \n
\n
\n
\u25b6
\n
Call Tool firecrawl_search of Server firecrawl-mcp
\n
\n
\n
Parameters
{\n \"country\": \"us\",\n \"lang\": \"en\",\n \"limit\": 5,\n \"query\": \"latest AI company research news\",\n \"scrapeOptions\": {\n \"formats\": [\n \"markdown\"\n ],\n \"onlyMainContent\": true\n }\n}
\n
\n
\n
\n
\n
Results
\n
\n
\n\n|Searching MCP Marketplace Tools and Servers", "id": "33ea10a7-c66a-48cd-80d3-ac9ace6ae747", "context": "{\"tool_id\": \"call_30fa90e8ecb944bd8613b3\", \"tool_name\": \"firecrawl_search\", \"tool_arguments\": {\"query\": \"latest AI company research news\", \"limit\": 5, \"lang\": \"en\", \"country\": \"us\", \"scrapeOptions\": {\"formats\": [\"markdown\"], \"onlyMainContent\": true}}, \"toolname_to_server_dict\": {\"firecrawl_search\": [\"firecrawl-mcp\"], \"firecrawl_extract\": [\"firecrawl-mcp\"], \"firecrawl_deep_research\": [\"firecrawl-mcp\"], \"get_pricing\": [\"awslabs.aws-pricing-mcp-server\"], \"generate_cost_report\": [\"awslabs.aws-pricing-mcp-server\"], \"get_pricing_service_codes\": [\"awslabs.aws-pricing-mcp-server\"], \"get_pricing_attribute_values\": [\"awslabs.aws-pricing-mcp-server\"], \"get_price_list_urls\": [\"awslabs.aws-pricing-mcp-server\"], \"sequentialthinking\": [\"sequential-thinking\"], \"get_notification_details\": [\"github\"], \"get_stock_price_global_market\": [\"finance-agent-mcp-server\"], \"tavily_search\": [\"tavily-remote-mcp\"], \"ExplainCDKNagRule\": [\"awslabs.cdk-mcp-server\"], \"CheckCDKNagSuppressions\": [\"awslabs.cdk-mcp-server\"], \"SearchGenAICDKConstructs\": [\"awslabs.cdk-mcp-server\"], \"show_subscription_plan_details\": [\"paypal\"], \"show_subscription_details\": [\"paypal\"], \"get_order\": [\"paypal\"], \"accept_dispute_claim\": [\"paypal\"], \"get_refund\": [\"paypal\"]}}" }, { "role": "user", "content": "
ACCEPT
" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_31924021412031204fsdf", "type": "tool_use", "function": { "name": "firecrawl_search", "arguments": "{\"query\": \"AI Research News\"}" } }] }, { "role": "tool", "tool_call_id": "call_31924021412031204fsdf", "name": "firecrawl_search", "content": "\nThe latest AI company research news highlights significant advancements and strategic moves by leading tech firms. Here are some key updates:\n\n- **Google DeepMind** introduced **AlphaFold 3**, a revolutionary model capable of predicting the structure and interactions of all life\u2019s molecules, including proteins, DNA, and RNA, with unprecedented accuracy. This breakthrough could transform drug discovery and molecular biology research. [Read more](https://www.deepmind.com/)\n\n- **OpenAI** is advancing its **o3** and **o4** reasoning models, focusing on improved planning, tool use, and problem-solving capabilities. The company is also reportedly developing a new AI model named **Strawberry**, aimed at enhancing deep reasoning and autonomous task execution. [Source](https://openai.com/research)\n\n- **Anthropic** released **Claude 3.5 Sonnet**, which outperforms its predecessors and competing models in coding, math, and reasoning benchmarks. The model is now being integrated into enterprise workflows for enhanced decision support and automation. [Learn more](https://www.anthropic.com/news/claude-3-5-sonnet)\n\n- **Microsoft** and **NVIDIA** have deepened their AI partnership, co-developing next-gen AI chips and cloud infrastructure to support large-scale AI training. Microsoft is also integrating more AI capabilities into its Azure platform, including custom LLM deployments. [Microsoft AI News](https://news.microsoft.com/ai)\n\n- **xAI**, Elon Musk\u2019s AI company, continues training **Grok-3** on real-time data from X (formerly Twitter), aiming to create a more dynamic and context-aware AI assistant. Grok is being tested for advanced reasoning and multi-modal capabilities. [Updates via X](https://x.com/xai)\n\n- **Meta AI** unveiled **Llama 3.1**, a fully open-source large language model with enhanced multilingual support and reasoning abilities. It is now one of the most widely adopted models in the open-source AI community. [Meta AI Blog](https://ai.meta.com/llama/)\n\nThese developments reflect a rapid pace of innovation in the AI sector, with companies focusing on more powerful, efficient, and accessible models for both research and commercial applications." }, { "role": "assistant", "content": "Start Running Tool firecrawl_search ", "id": "3cbb4504-f080-4bb7-a9cc-9cfaa3a9756d", "context": "" }, { "role": "assistant", "content": "
Finding Relevant Tools Using Queries:
company
latest
AI news
ai
artificial intelligence
technology trends
research updates
\r
Relevant MCP Servers:
\r
Relevant Tools:
firecrawl_search
firecrawl_extract
firecrawl_deep_research
get_pricing
generate_cost_report
get_pricing_service_codes
get_pricing_attribute_values
get_price_list_urls
sequentialthinking
get_notification_details
get_stock_price_global_market
tavily_search
ExplainCDKNagRule
CheckCDKNagSuppressions
SearchGenAICDKConstructs
show_subscription_plan_details
show_subscription_details
get_order
accept_dispute_claim
get_refund
| \n
\n
\n
\u25b6
\n
Call Tool firecrawl_search of Server firecrawl-mcp
\n
\n
\n
Parameters
{\n \"country\": \"us\",\n \"lang\": \"en\",\n \"limit\": 5,\n \"query\": \"latest AI company research news\",\n \"scrapeOptions\": {\n \"formats\": [\n \"markdown\"\n ],\n \"onlyMainContent\": true\n }\n}
\n
\n
\n
\n
\n
Results
\n
\n
\n\n|Searching MCP Marketplace Tools and Servers", "id": "33ea10a7-c66a-48cd-80d3-ac9ace6ae747", "context": "{\"tool_id\": \"call_30fa90e8ecb944bd8613b3\", \"tool_name\": \"firecrawl_search\", \"tool_arguments\": {\"query\": \"latest AI company research news\", \"limit\": 5, \"lang\": \"en\", \"country\": \"us\", \"scrapeOptions\": {\"formats\": [\"markdown\"], \"onlyMainContent\": true}}, \"toolname_to_server_dict\": {\"firecrawl_search\": [\"firecrawl-mcp\"], \"firecrawl_extract\": [\"firecrawl-mcp\"], \"firecrawl_deep_research\": [\"firecrawl-mcp\"], \"get_pricing\": [\"awslabs.aws-pricing-mcp-server\"], \"generate_cost_report\": [\"awslabs.aws-pricing-mcp-server\"], \"get_pricing_service_codes\": [\"awslabs.aws-pricing-mcp-server\"], \"get_pricing_attribute_values\": [\"awslabs.aws-pricing-mcp-server\"], \"get_price_list_urls\": [\"awslabs.aws-pricing-mcp-server\"], \"sequentialthinking\": [\"sequential-thinking\"], \"get_notification_details\": [\"github\"], \"get_stock_price_global_market\": [\"finance-agent-mcp-server\"], \"tavily_search\": [\"tavily-remote-mcp\"], \"ExplainCDKNagRule\": [\"awslabs.cdk-mcp-server\"], \"CheckCDKNagSuppressions\": [\"awslabs.cdk-mcp-server\"], \"SearchGenAICDKConstructs\": [\"awslabs.cdk-mcp-server\"], \"show_subscription_plan_details\": [\"paypal\"], \"show_subscription_details\": [\"paypal\"], \"get_order\": [\"paypal\"], \"accept_dispute_claim\": [\"paypal\"], \"get_refund\": [\"paypal\"]}}" }], "reward": -1.0, "reward_description": "DOWNVOTE" } ``` ### Function Calling Tool Use Dataset The functions calls datasets contains the List of messages (Users' Original Query), Available Tools (List of Json Schema) and Tool Call Results by SOTA LLM. For example, the LLM chooses puppeteer_navigate tool from 7 other tools of MCP Server puppeteer. And set the parameters as {\"url\": \"https://www.baidu.com\"} | KEY | Description | | ---- | ---- | | trace_id | The unique API Calling TRACE ID | | session_id | The identifier of each dialogues, which consists of multiple turns of dialogues and each user input contains trace_id | | data | The Json Object of Each Function Call | | data.function_calls.messages | List of Messages in {"role":"", "content":""} formats. | | data.function_calls.tools | List of Available Tools, including the schema of tools name, description and parameters| ``` { "trace_id": "72d51b6e-8c48-42ee-bfc9-05209d1444c8", "session_id": "7ca7e84c-cee5-4ddd-be1e-748df2be481e", "model": "claude-opus-4", "data": { "function_calls": [{ "messages": [{ "role": "user", "content": "Visit website baidu.com and take a screenshot" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_f02ba9ee6b344dd0af9041", "type": "tool_use", "function": { "name": "puppeteer_navigate", "arguments": "{\"url\": \"https://www.baidu.com\"}" } }] }, { "role": "tool", "tool_call_id": "call_f02ba9ee6b344dd0af9041", "name": "puppeteer_navigate", "content": "" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_c1e8658beda04f6881e8eb", "type": "tool_use", "function": { "name": "puppeteer_screenshot", "arguments": "{\"name\": \"baidu_homepage\"}" } }] }, { "role": "tool", "tool_call_id": "call_c1e8658beda04f6881e8eb", "name": "puppeteer_screenshot", "content": "" }], "tools": [{ "type": "function", "function": { "name": "puppeteer_navigate", "description": "Navigate to a URL", "parameters": { "type": "object", "properties": { "url": { "type": "string", "description": "URL to navigate to" }, "launchOptions": { "type": "object", "description": "PuppeteerJS LaunchOptions. Default null. If changed and not null, browser restarts. Example: { headless: true, args: ['--no-sandbox'] }" }, "allowDangerous": { "type": "boolean", "description": "Allow dangerous LaunchOptions that reduce security. When false, dangerous args like --no-sandbox will throw errors. Default false." } }, "required": ["url"] } } }, { "type": "function", "function": { "name": "puppeteer_screenshot", "description": "Take a screenshot of the current page or a specific element", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "Name for the screenshot" }, "selector": { "type": "string", "description": "CSS selector for element to screenshot" }, "width": { "type": "number", "description": "Width in pixels (default: 800)" }, "height": { "type": "number", "description": "Height in pixels (default: 600)" }, "encoded": { "type": "boolean", "description": "If true, capture the screenshot as a base64-encoded data URI (as text) instead of binary image content. Default false." } }, "required": ["name"] } } }, { "type": "function", "function": { "name": "puppeteer_click", "description": "Click an element on the page", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to click" } }, "required": ["selector"] } } }, { "type": "function", "function": { "name": "puppeteer_fill", "description": "Fill out an input field", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for input field" }, "value": { "type": "string", "description": "Value to fill" } }, "required": ["selector", "value"] } } }, { "type": "function", "function": { "name": "puppeteer_select", "description": "Select an element on the page with Select tag", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to select" }, "value": { "type": "string", "description": "Value to select" } }, "required": ["selector", "value"] } } }, { "type": "function", "function": { "name": "puppeteer_hover", "description": "Hover an element on the page", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to hover" } }, "required": ["selector"] } } }, { "type": "function", "function": { "name": "puppeteer_evaluate", "description": "Execute JavaScript in the browser console", "parameters": { "type": "object", "properties": { "script": { "type": "string", "description": "JavaScript code to execute" } }, "required": ["script"] } } }], "tool_calls": { "id": "call_f02ba9ee6b344dd0af9041", "function": { "arguments": "{\"url\": \"https://www.baidu.com\"}", "name": "puppeteer_navigate" }, "type": "function" } }, { "messages": [{ "role": "user", "content": "Visit website baidu.com and take a screenshot" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_f02ba9ee6b344dd0af9041", "type": "tool_use", "function": { "name": "puppeteer_navigate", "arguments": "{\"url\": \"https://www.baidu.com\"}" } }] }, { "role": "tool", "tool_call_id": "call_f02ba9ee6b344dd0af9041", "name": "puppeteer_navigate", "content": "" }, { "role": "assistant", "content": "", "tool_calls": [{ "id": "call_c1e8658beda04f6881e8eb", "type": "tool_use", "function": { "name": "puppeteer_screenshot", "arguments": "{\"name\": \"baidu_homepage\"}" } }] }, { "role": "tool", "tool_call_id": "call_c1e8658beda04f6881e8eb", "name": "puppeteer_screenshot", "content": "" }], "tools": [{ "type": "function", "function": { "name": "puppeteer_navigate", "description": "Navigate to a URL", "parameters": { "type": "object", "properties": { "url": { "type": "string", "description": "URL to navigate to" }, "launchOptions": { "type": "object", "description": "PuppeteerJS LaunchOptions. Default null. If changed and not null, browser restarts. Example: { headless: true, args: ['--no-sandbox'] }" }, "allowDangerous": { "type": "boolean", "description": "Allow dangerous LaunchOptions that reduce security. When false, dangerous args like --no-sandbox will throw errors. Default false." } }, "required": ["url"] } } }, { "type": "function", "function": { "name": "puppeteer_screenshot", "description": "Take a screenshot of the current page or a specific element", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "Name for the screenshot" }, "selector": { "type": "string", "description": "CSS selector for element to screenshot" }, "width": { "type": "number", "description": "Width in pixels (default: 800)" }, "height": { "type": "number", "description": "Height in pixels (default: 600)" }, "encoded": { "type": "boolean", "description": "If true, capture the screenshot as a base64-encoded data URI (as text) instead of binary image content. Default false." } }, "required": ["name"] } } }, { "type": "function", "function": { "name": "puppeteer_click", "description": "Click an element on the page", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to click" } }, "required": ["selector"] } } }, { "type": "function", "function": { "name": "puppeteer_fill", "description": "Fill out an input field", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for input field" }, "value": { "type": "string", "description": "Value to fill" } }, "required": ["selector", "value"] } } }, { "type": "function", "function": { "name": "puppeteer_select", "description": "Select an element on the page with Select tag", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to select" }, "value": { "type": "string", "description": "Value to select" } }, "required": ["selector", "value"] } } }, { "type": "function", "function": { "name": "puppeteer_hover", "description": "Hover an element on the page", "parameters": { "type": "object", "properties": { "selector": { "type": "string", "description": "CSS selector for element to hover" } }, "required": ["selector"] } } }, { "type": "function", "function": { "name": "puppeteer_evaluate", "description": "Execute JavaScript in the browser console", "parameters": { "type": "object", "properties": { "script": { "type": "string", "description": "JavaScript code to execute" } }, "required": ["script"] } } }], "tool_calls": { "id": "call_c1e8658beda04f6881e8eb", "function": { "arguments": "{\"name\": \"baidu_homepage\"}", "name": "puppeteer_screenshot" }, "type": "function" } }] }, } ```