Latex for Financial Engineering Mathematics Formula-Brownian Motion Ito Lemma Risk-Neutral Valuation

rockingdingo #financial engineering #mathematics #finance


Latex for Financial Engineering Mathematics Formula-Brownian Motion Ito Lemma Risk-Neutral Valuation

Navigation

In this blog, we will summarize the latex code of most popular formulas and equations for Financial Engineering Formula and Equation (Continuous-Time Finance). We will cover important topics including Standard Brownian Motion (SBM), Geometric Brownian Motion (GBM), Ito Lemma, Stochastic Integrals, Solutions to Some Common SDEs, Brownian Motion Variation, Stock Prices as a GBM, Stock Prices are Lognormal, Sharpe Ratio and Hedging, The Black-Scholes Equation, Risk-Neutral Valuation and Power Contracts.

1. Continuous-Time Finance

  • Standard Brownian Motion

    Financial,Economics

    Equation



    Latex Code

                Z(t) \sim N(0, t) \\
                Z(t+s) - Z(t) \sim N(0, s) \\
                Z(t+s) \sim N(Z(t), s)
            

    Explanation

    Latex code for the Standard Brownian Motion. I will briefly introduce the notations in this formulation. {Z(t)} has independent increments, and {Z(t)} has stationary increments such that Z (t + s) â?? Z (t) follows standard normal distribution

    • : Value of Z at time stamp t
    • : Stationary increments of Standard Brownian Motion

    Related Documents

    Related Videos

  • Geometric Brownian Motion

    Financial,Economics

    Equation



    Latex Code

                Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\
                E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\
                E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\
                \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)
            

    Explanation

    Latex code for the Geometric Brownian Motion.

    • : Observed value Y(t) at time stamp t
    • : Any normal random variable
    • : Drift coefficient
    • : Volatility

    Related Documents

    Related Videos

  • Geometric Brownian Motion SDEs

    Financial,Economics

    Equation



    Latex Code

                \mathrm{d}Y(t) = \mu Y(t)dt + \sigma Y(t) \mathrm{d}Z(t) \\
                \mathrm{d}[\ln Y(t)] = (\mu - \frac{\sigma^2}{2}) \mathrm{d}t + \sigma \mathrm{d}Z(t) \\
                Y(t) = T(0) e^{(\mu - \frac{\sigma^2}{2})t + \sigma Z(t)}
            

    Explanation

    Latex code for the Geometric Brownian Motion.

    • : Observed value Y(t) at time stamp t
    • : Any normal random variable
    • : Drift coefficient
    • : Volatility

    Related Documents

    Related Videos

  • Ito Lemma

    Financial,Economics

    Equation



    Latex Code

                \mathrm{d}X(t) = a(t, X(t)) \mathrm{d}t + b(t, X(t))\mathrm{d} Z(t) \\
                Y(t) = f(t, X(t)) \mathrm{d}t \\
                \mathrm{d} Y(t) = f_{t}(t, X(t)) + f_{x}(t, X(t))\mathrm{d} X(t) + \frac{1}{2} f_{xx}(t, X(t))[\mathrm{d}X(t)]^{2} \\
                [\mathrm{d} X(t)]^{2} = b^{2}(t, X(t))\mathrm{d} t
            

    Explanation

    Latex code for the Ito Lemma.

    • : Diffusion
    • : Stochastic differential equation for X(t)

    Related Documents

    Related Videos

  • Stock Prices as Geometric Brownian Motion

    Financial,Economics

    Equation



    Latex Code

                \frac{\mathrm{d}S(t)}{S(t)} = (a - \delta) \mathrm{d}t + \sigma \mathrm{d}Z(t) \\
                S(t) = S(0) e^{(a - \delta - \frac{\sigma^{2}}{2})t + \sigma Z(t)} \\
                \mathrm{d}[\ln S(t)] = (a - \delta - \frac{\sigma^{2}}{2}) \mathrm{d}t + \sigma \sigma \mathrm{d} Z(t) \\
                S(t) \sim \ln( \ln S(0) + (a - \delta - \frac{\sigma^2}{2})t, \sigma^{2}t)
            

    Explanation

    Latex code for Stock Prices as Geometric Brownian Motion.

    • : Observed stock price S(t) at time stamp t
    • : Any normal random variable
    • : Drift coefficient
    • : Volatility

    Related Documents

    Related Videos

  • Sharpe Ratio

    Financial,Economics

    Equation



    Latex Code

                \frac{\mathrm{d}X(t)}{X(t)} = m \mathrm{d}t + s \mathrm{d}Z(t) \\
                \phi = \frac{m + \delta -r }{s} \\
                \phi = \frac{a - r}{\sigma}
            

    Explanation

    Latex code for Sharpe Ratio.

    • : Compounded Dividend Rate
    • : Sharpe ratio
    • : Sharpe ratio of any asset written on a GBM

    Related Documents

    Related Videos

  • Risk-Neutral Valuation and Power Contracts

    Financial,Economics

    Equation



    Latex Code

                \frac{\mathrm{d}S(t)}{S(t)} = (r - \delta) \mathrm{d}t + \sigma \mathrm{d} \tilt{Z}(t) \\
                \tilt{Z}(t) = Z(t) + \phi t \\
                V(S(t), t) = e^{-r(T-t)} E^{*}[V(S(T), T) | S(T)] \\
                F^{p}_{t, T}(S^{a}) = S^{a}(t) e ^{ (-r + a(r-\delta) + \frac{1}{2} a(a-1)\sigma^{2})(T-t)}
            

    Explanation

    Latex code for Risk-Neutral Valuation and Power Contracts.

    • : Payoff a power contract at time T
    • : Price of the power contract
    • : Risk-neutral equations

    Related Documents

    Related Videos