List of Calculus Formulas Latex Code (First Part: Limits, Differentiation)
Navigation
In this blog, we will summarize the latex code for basic calculus formulas, including Limits, Differentiation and Integration. For limits formulas, we will cover sections including: L'Hospital Rule, Limits of Power, Limits of xln(x), Limits of x^{n}/n!. For differentiation formulas, we will cover Differentiation of Polynomial Function, Chain Rule for Differentiation, Differentiation of Multiplication, Differentiation of Division, Differentiation of Trigonometric formulas (sin, cos, tan, sec), and Differentiation of Hyperbolic formulas (sinh, cosh, tanh, sech, coth, cosech).
- 1. Limits
- 1.1 L'Hospital Rule
- 1.2 Limits of Power
- 1.3 Limits of xln(x)
- 1.4 Limits of x^{n}/n!
- 2. Differentiation
- 2.1 Differentiation of Polynomial Function
- 2.2 Chain Rule for Differentiation
- 2.3 Differentiation of Multiplication
- 2.4 Differentiation of Division
- 2.5 Differentiation of Sine Function sin(x)
- 2.6 Differentiation of Cosine Function cos(x)
- 2.7 Differentiation of Tangent Function tan(x)
- 2.8 Differentiation of Secant Function sec(x)
- 2.9 Differentiation of Hyperbolic Sine Function sinh(x)
- 2.10 Differentiation of Hyperbolic Cosine Function cosh(x)
- 2.11 Differentiation of Hyperbolic Tangent Function tanh(x)
- 2.12 Differentiation of Hyperbolic Secant Function sech(x)
- 2.13 Differentiation of Hyperbolic Cot-Tangent Function coth(x)
- 2.14 Differentiation of Hyperbolic Cosech Function cosech(x)
-
1.1 L'Hospital Rule
Equation
Latex Code
\lim_{x\rightarrow c} \frac{f(x)}{g(x)}=\frac{f^{'}(c)}{g^{'}(c)},\text{given} f(c)=g(c)=0
Explanation
As x approaches c of "f-ofâ??x over g-ofâ??x", the limit value of \lim_{x\rightarrow c} equals the the limit as x approaches c of "f-dash-ofâ??x over g-dash-ofâ??x".
-
1.2 Limits of Power
Equation
Latex Code
\lim_{n \rightarrow \infty}(1+\frac{x}{n})^{n} \rightarrow e^{x}
Explanation
The limit of power n of (1+x/n) equals to e^{x} as n approaches infinity.
-
1.3 Limits of xln(x)
Equation
Latex Code
\lim_{x \rightarrow 0}x\ln(x)=0
Explanation
The limit of xln(x) equals to 0 as x approaches 0.
-
1.4 Limits of x^{n}/n!
Equation
Latex Code
\lim_{n \rightarrow \infty}\frac{x^{n}}{n!}=0
Explanation
The limit of x^{n}/n! equals to 0 as n approaches infinity.
-
2.1 Differentiation of Polynomial function
Equation
Latex Code
\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=f^{'}(x) \\\frac{\mathrm{d}}{\mathrm{d} x} (ax^{n})=anx^{n-1} \\\frac{\mathrm{d}}{\mathrm{d} x} (ax)=a \\\frac{\mathrm{d}}{\mathrm{d} x} (a)=0 \\\frac{\mathrm{d}}{\mathrm{d} x} (ax^{m} + bx^{n})=amx^{m-1} + bnx^{n-1}
Explanation
The differentiation of polynomial function d(ax^{n})/dx equals to anx^{n-1}.
-
2.2 Chain Rule for Differentiation
Equation
Latex Code
\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} z} \times \frac{\mathrm{d} z}{\mathrm{d} x}
Explanation
Chain rule for Differentiation.
-
2.3 Differentiation of Multiplication
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(uv)=u \frac{\mathrm{d} v}{\mathrm{d} x} + v \frac{\mathrm{d} u}{\mathrm{d} x}
Explanation
Differentiation of Multiplication.
-
2.4 Differentiation of Division
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(\frac{u}{v})=\frac{v \frac{\mathrm{d} u}{\mathrm{d} x} - u \frac{\mathrm{d} v}{\mathrm{d} x}}{v^{2}}
Explanation
Differentiation of Division.
-
2.5 Differentiation of Sine Function sin(x)
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(\sin(x))=\cos(x)
Explanation
Differentiation of Sine Function sin(x)
-
2.6 Differentiation of Cosine Function cos(x)
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(\cos(x))=-\sin(x)
Explanation
Differentiation of Cosine Function cos(x)
-
2.7 Differentiation of Tangent Function tan(x)
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(\tan(x))=\sec^{2}(x)
Explanation
Differentiation of Tangent Function tan(x)
-
2.8 Differentiation of Secant Function sec(x)
Equation
Latex Code
\frac{\mathrm{d}}{\mathrm{d} x}(\sec(x))=\sec(x)\tan(x)
Explanation
Differentiation of Sec Function sec(x)
-
2.9 Differentiation of Hyperbolic Sine Function sinh(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\sinh(x))=\cosh(x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function sinh(x). The calculation of hyperbolic is defined as blow:
-
2.10 Differentiation of Hyperbolic Cosine Function cosh(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\cosh(x))=\sinh(x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function. The calculation of hyperbolic is defined as blow:
-
2.11 Differentiation of Hyperbolic Tangent Function tanh(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\tanh(x))=\text{sech}^{2} (x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function. The calculation of hyperbolic is defined as blow:
-
2.12 Differentiation of Hyperbolic Secant Function sech(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\text{sech}(x))=-\text{sech}(x) \tanh(x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function. The calculation of hyperbolic is defined as blow:
-
2.13 Differentiation of Hyperbolic Cot-Tangent Function coth(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\text{coth}(x))=-\text{cosech}^{2} (x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function. The calculation of hyperbolic is defined as blow:
-
2.14 Differentiation of Hyperbolic Cosech Function cosech(x)
Equation
Latex Code
Differentiation of Hyperbolic Function\frac{\mathrm{d}}{\mathrm{d} x}(\text{cosech}(x))=-\text{cosech}(x)\text{coth}(x)
\sinh(x)=\frac{e^{x}-e^{-x}}{2} \\ \cosh(x)=\frac{e^{x}+e^{-x}}{2} \\ \tanh(x)= \frac{\sinh(x)}{\cosh(x)} \\ \text{sech}(x)= \frac{1}{\cosh(x)} \\ \text{cosech}(x)= \frac{1}{\sinh(x)}
Explanation
Differentiation of Hyperbolic Function. The calculation of hyperbolic is defined as blow: