X
List of Differential Equations Formulas Latex Code
rockingdingo #math #differential equations #laplace #besselList of Differential Equations Formulas Latex Code
Navigation
In this blog, we will summarize the latex code for differential equations formulas, including diffusion (conduction) equation, wave equation, heat equation, laplace equation, Legendre's equation, Bessel's equation, Spherical Harmonics Equation, etc.
- 1. Differential Equations
- 1.0 Diffusion (conduction) Equation
- 1.1 Wave Equation
- 1.2 Heat Equation
- 1.3 Laplace Equation
- 1.4 Legendre's Equation
- 1.5 Bessel's Equation
- 1.6 Spherical Harmonics Equation
-
1.0 Diffusion (conduction) Equation
Equation
Latex Code
\kappa u_{xx} = u_{t} \\ \frac{\partial \Psi}{\partial t}=\kappa \triangledown^{2} \Psi
Explanation
- : First Order Partial Derivative of function u(x,t) over time t.
- : Second Order Partial Derivative of function u(x,t) over x.
Related Documents
-
1.1 Wave Equation
Equation
Latex Code
u_{tt}=c^{2}u_{xx}
Explanation
- : Second Order Partial Derivative of function u(x,t) over time t.
- : Second Order Partial Derivative of function u(x,t) over x.
Related Documents
-
1.2 Heat Equation
Equation
Latex Code
u_{t}={\alpha}^{2}u_{xx}
Explanation
- : First Order Partial Derivative of function u(x,t) over time t.
- : Second Order Partial Derivative of function u(x,t) over x.
Related Documents
-
1.3 Laplace Equation
Equation
Latex Code
u_{xx} = 0
Explanation
- : Second Order Partial Derivative of function u(x,t) over x.
Related Documents
-
1.4 Legendre's Equation
Equation
Latex Code
(1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\ P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\ P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]
Explanation
- Solutions of Legendre equations are Legendre polynomials
- Recursion relation:
Related Documents
-
1.5 Bessel's equation
Equation
Latex Code
x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\ J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}
Explanation
- Solutions of Bessel equations are Bessel functions .
Related Documents
-
1.6 Spherical Harmonics Equation
Equation
Latex Code
[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}) ] Y^{m}_{l} + l(l+1) Y^{m}_{l}=0 \\ Y^{m}_{l}(\theta,\phi)=\sqrt{\frac{2l+1}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}}P^{m}_{l}(\cos \theta) e^{im \phi} \times \begin{cases}(-1)^{m} & m\ge 0 \\ 1 & m <0 \end{cases}
Explanation
- Spherical Harmonics Equation
- Spherical Harmonics Solution :
Related Documents
Reply