List of Physics Formulas Latex Code: Electricity & Magnetism (Graduate Level Physics)
Navigation
In this blog, we will introduce most popuplar physics formulas in Electricity & Magnetism. This blog covers topics, including the Maxwell equations, force and potential, Gauge Transformations, Energy of the Electromagnetic Field, etc.
- 1. Electricity & Magnetism
- 1.1 The Maxwell Equations-Integral Form
- 1.2 The Maxwell Equations-Differential Form
- 1.3 Force and potential
- 1.4 Gauge Transformations
- 1.5 Energy of the Electromagnetic Field
-
1.1 The Maxwell Equations-Integral
Equation
Latex Code
\oiint (\vec{D}\cdot \vec{n}) \mathrm{d}^{2}A=Q_{\text{free,included}}\\ \oiint (\vec{B}\cdot \vec{n}) \mathrm{d}^{2}A=0 \\ \oint \vec{E} \mathrm{d}\vec{s}=-\frac{\mathrm{d}\Phi}{\mathrm{d}t}\\ \oint \vec{H} \mathrm{d}\vec{s}=I_{\text{free,included}}+\frac{\mathrm{d}\Psi }{\mathrm{d}t}
Explanation
Latex code for integral form of the Maxwell Equations. I will briefly introduce the notations in this formulation.
- : The electric displacement
- : The electric field strength
- : The magnetic flux density
- : The magnetic field strength In the formulation, the first formula (1) describes the property of electric displacement . The second formula (2) describes the property of magnetic flux density . The third formula (3) describes how the variation in magnetic flux density influence the electric field strength . The fourth formula (4) describes how the variation in electric displacement influence the magnetic field strength . See this document for more details:
-
1.2 The Maxwell Equations-Differential Form
Equation
Latex Code
\nabla \cdot \vec{D}=\rho_{free} \\ \nabla \cdot \vec{B}=0 \\ \nabla \times \vec{E}=-\frac{\partial{\vec{B}}}{\partial{t}} \\ \nabla \times \vec{H}=\vec{J}_{free}+\frac{\partial{\vec{D}}}{\partial{t}}
Explanation
Latex code for integral form of the Maxwell Equations. I will briefly introduce the notations in this formulation.
-
1.3 Force and potential
Equation
Latex Code
\vec{F}_{12}=\frac{Q_{1}Q{2}}{4\pi\epsilon_{0}\epsilon_{r}r^{2}}\vec{e_{r}} \\ \vec{E}=\frac{\vec{F}}{Q}
Explanation
The force and the electric field between 2 point charges are given by above equations. This formulation is a transformation of original Coulomb force:
-
1.4 Gauge Transformationsl
Equation
Latex Code
\vec{A}^{'}=\vec{A}-\nabla f \\ V{'}=V+\frac{\partial{f}}{\partial{t}}
Explanation
The potentials of the electromagnetic fields transform as follows when a gauge transformation is applied. And \vec{E} and \vec{B} do not change.
-
1.5 Energy of the Electromagnetic Field
Equation
Latex Code
\frac{\mathrm{d} W}{\mathrm{d} \text{Vol}}=\omega=\int H \mathrm{d}B + \int E \mathrm{d}D
Explanation
I will briefly introduce the notations in this formulation of the energy density of the electromagnetic field.
- : The electric displacement
- : The electric field strength
- : The magnetic flux density
- : The magnetic field strength
Latex Code
\omega_{mag}=\frac{1}{2}\int \vec{J} \cdot \vec{A} \mathrm{d}^{3} x \\ \omega_{elec}=\frac{1}{2}\int \rho V \mathrm{d}^{3} x
Explanation
The energy density can be expressed in the potentials and currents as follows.