List of Physics Oscillations Formulas, Equations Latex Code
Navigation
In this blog, we will introduce most popuplar formulas in Oscillations, Physics. We will also provide latex code of the equations. Topics include harmonic oscillations, mechanic oscillations, electric oscillations, waves in long conductors, coupled conductors and transformers, pendulums, harmonic wave, etc.
- 1. Oscillations and Waves
- Harmonic oscillations
- Mechanic oscillations
- Electric oscillations
- Waves in long conductors
- Amplitude of a driven oscillation
- Coupled conductors and transformers
- Pendulums
- Angular frequency for a damped oscillation
- Displacement of a driven oscillator
- Displacement of a slightly damped oscillator
- Energy change in a damped oscillation
- Energy transmitted by a harmonic wave
- Harmonic wave function
- Kinetic energy of simple harmonic motion
- Phase constant of a driven oscillation
- Potential energy of simple harmonic motion
- Power transmitted by a harmonic wave
- Standing-wave function
- Superposition of standing waves on a string with both ends fixed
- Total energy of simple harmonic motion
- Velocity at resonance frequency of a driven oscillator
-
Harmonic oscillations
Equation
Latex Code
\Psi(t)=\hat{\Psi}(t)e^{i(\omega t \pm \phi)}=\hat{\Psi}(t)\cos (\omega t \pm \phi) \\ \sum_{i} \hat{\Psi_{i}}\cos(\alpha_{i} \pm \omega t) =\hat{\Phi}\cos (\beta \pm \omega t) \\ \tan (\beta)=\frac{\sum_{i} \hat{\Psi_{i}} \sin (\alpha_{i})}{\sum_{i} \hat{\Psi_{i}} \cos (\alpha_{i})} \\ \hat{\Phi}^{2} = \sum_{i} \hat{\Psi_{i}^{2}} + 2 \sum_{j > i} \sum_{i} \hat{\Psi_{i}} \hat{\Psi_{j}} \cos (\alpha_{i} - \alpha_{j}) \\ \int x(t) dt=\frac{x(t)}{i \omega} \\ \frac{d^{n}(x(t))}{d t^{n}}=(i \omega)^{n} x(t)
Explanation
Latex code for the harmonic oscillations. I will briefly introduce the notations in this formulation.
- : Amplitude
- Superposition of more harmonic oscillations with the same frequency
Related Documents
Related Videos
-
Mechanic oscillations
Equation
Latex Code
m\ddot{x}=F(t)-k\dot{x}-Cx \\ F(t)=\hat{F}\cos(\omega t) \\ -m\omega^2 x=F-Cx-ik\omega x \\ \omega_0^2=C/m \\ x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ Z=F/\dot{x} \\ Q=\frac{\sqrt{Cm}}{k}
Explanation
Latex code for the Mechanic Oscillations. I will briefly introduce the notations in this formulation.
- : Construction of spring with constant
- : Damping constant
- : Periodic force
- : Velocity
- : Impedance of the system
- : The quality of the system
- Velocity resonance frequency: The frequency with minimal
Related Documents
Related Videos
-
Electric oscillations
Equation
Latex Code
\text{Impedance} \\ Z=R+ix \\ \text{Series connection} \\ V=IZ, Z_{\rm tot}=\sum_i Z_i~,~~L_{\rm tot}=\sum_i L_i~,~~ \frac{1}{C_{\rm tot}}=\sum_i\frac{1}{C_i}~,~~Q=\frac{Z_0}{R}~,~~ Z=R(1+iQ\delta) \\ \text{Parallel connection} \\ \frac{1}{Z_{\rm tot}}=\sum_i\frac{1}{Z_i}~,~~ \frac{1}{L_{\rm tot}}=\sum_i\frac{1}{L_i}~,~~ C_{\rm tot}=\sum_i C_i~,~~Q=\frac{R}{Z_0}~,~~ Z=\frac{R}{1+iQ\delta}
Explanation
Latex code for the Electric oscillations. I will briefly introduce the notations in this formulation.
- : Phase Angle
- : Impedance of a Resistor
- : Capacitor
- : Self inductor
- : Quality of a coil
Related Documents
Related Videos
-
Waves in long conductors
Equation
Latex Code
Z_0=\sqrt{\frac{dL}{dx}\frac{dx}{dC}} \\ v=\sqrt{\frac{dx}{dL}\frac{dx}{dC}}
Explanation
Latex code for the Waves in Long conductors. I will briefly introduce the notations in this formulation.
- : is transmission velocity
Related Documents
Related Videos
-
Amplitude of a driven oscillation
Equation
Latex Code
A = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}
Explanation
Related Documents
Related Videos
-
Coupled conductors and transformers
Equation
Latex Code
M_{12}=M_{21}:=M=k\sqrt{L_1L_2}=\frac{N_1\Phi_1}{I_2}=\frac{N_2\Phi_2}{I_1}\sim N_1N_2 \\ \frac{V_1}{V_2}=\frac{I_2}{I_1}=-\frac{i\omega M}{i\omega L_2+R_{\rm load}}\approx-\sqrt{\frac{L_1}{L_2}}=-\frac{N_1}{N_2} \\ \Phi_{12}=M_{12}I_2 \\ \Phi_{21}=M_{21}I_1
Explanation
Latex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation.
- : part of the flux originating from I_{2{} through coil 2, which is enclosed by coil 1
- : coefficients of mutual induction
- : Coupling factor
Related Documents
Related Videos
-
Pendulums
Equation
Latex Code
T=1/f \\ T=2\pi\sqrt{m/C} \\ T=2\pi\sqrt{I/\tau} \\ T=2\pi\sqrt{I/\kappa} \\ T=2\pi\sqrt{l/g}
Explanation
Latex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation.
- : Oscillating spring
- : Physical pendulum
- : Torsion pendulum
- : Mathematical pendulum
Related Documents
Related Videos
-
Angular frequency for a damped oscillation
Equation
Latex Code
\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}
Explanation
Related Documents
Related Videos
-
Displacement of a driven oscillator
Equation
Latex Code
x = A\cos \left( {\omega t + \delta } \right)
Explanation
Related Documents
Related Videos
-
Displacement of a slightly damped oscillator
Equation
Latex Code
x = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)
Explanation
Related Documents
Related Videos
-
Energy change in a damped oscillation
Equation
Latex Code
\frac{{\Delta E}}{E} = - \frac{b}{m}T \\ E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)
Explanation
Related Documents
Related Videos
-
Energy transmitted by a harmonic wave
Equation
Latex Code
\Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta t
Explanation
Related Documents
Related Videos
-
Harmonic wave function
Equation
Latex Code
y(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right] = A\sin \left[ {k(x - \upsilon t)} \right]
Explanation
Related Documents
Related Videos
-
Kinetic energy of simple harmonic motion
Equation
Latex Code
K = \frac{1}{2}kA^2 \sin ^2 \left( {\omega t + \delta } \right)
Explanation
Related Documents
Related Videos
-
Phase constant of a driven oscillation
Equation
Latex Code
\tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}
Explanation
Related Documents
Related Videos
-
Potential energy of simple harmonic motion
Equation
Latex Code
U = \frac{1}{2}kA^2 \cos ^2 \left( {\omega t + \delta } \right)
Explanation
Related Documents
Related Videos
-
Power transmitted by a harmonic wave
Equation
Latex Code
P = \frac{{dE}}{{dt}} = \frac{1}{2}\mu \omega ^2 A^2 \upsilon
Explanation
Related Documents
Related Videos
-
Standing-wave function
Equation
Latex Code
y(x,t) = A_n \cos (\omega _n t + \delta _n )\sin (k_n x)
Explanation
Related Documents
Related Videos
-
Superposition of standing waves on a string with both ends fixed
Equation
Latex Code
y(x,t) = \sum\limits_n {A_n \cos (\omega _n t + \delta _n )\sin (k_n x)}
Explanation
Related Documents
Related Videos
-
Total energy of simple harmonic motion
Equation
Latex Code
E_{Total} = \frac{1}{2}kA^2
Explanation
Related Documents
Related Videos
-
Velocity at resonance frequency of a driven oscillator
Equation
Latex Code
\upsilon = + A\omega \cos \left( {\omega t} \right) = - A\omega \sin \left( {\omega t - \frac{\pi }{2}} \right)
Explanation
Related Documents
Related Videos