X

List of Physics Oscillations Formulas, Equations Latex Code

Navigation

In this blog, we will introduce most popuplar formulas in Oscillations, Physics. We will also provide latex code of the equations. Topics include harmonic oscillations, mechanic oscillations, electric oscillations, waves in long conductors, coupled conductors and transformers, pendulums, harmonic wave, etc.

    1. Oscillations and Waves

  • Harmonic oscillations

    Equation


    Latex Code
                \Psi(t)=\hat{\Psi}(t)e^{i(\omega t \pm \phi)}=\hat{\Psi}(t)\cos (\omega t \pm \phi) \\ 
                \sum_{i} \hat{\Psi_{i}}\cos(\alpha_{i} \pm \omega t) =\hat{\Phi}\cos (\beta \pm \omega t) \\
                \tan (\beta)=\frac{\sum_{i} \hat{\Psi_{i}} \sin (\alpha_{i})}{\sum_{i} \hat{\Psi_{i}} \cos (\alpha_{i})} \\ 
                \hat{\Phi}^{2} = \sum_{i}  \hat{\Psi_{i}^{2}} + 2 \sum_{j > i} \sum_{i} \hat{\Psi_{i}} \hat{\Psi_{j}} \cos (\alpha_{i} - \alpha_{j}) \\
                \int x(t) dt=\frac{x(t)}{i \omega} \\
                \frac{d^{n}(x(t))}{d t^{n}}=(i \omega)^{n} x(t)
            
    Explanation

    Latex code for the harmonic oscillations. I will briefly introduce the notations in this formulation.

    • : Amplitude
    • Superposition of more harmonic oscillations with the same frequency

    Related Documents

    Related Videos

  • Mechanic oscillations

    Equation


    Latex Code
                m\ddot{x}=F(t)-k\dot{x}-Cx \\ 
                F(t)=\hat{F}\cos(\omega t) \\ 
                -m\omega^2 x=F-Cx-ik\omega x \\ 
                \omega_0^2=C/m \\ 
                x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ 
                \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ 
                \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ 
                Z=F/\dot{x} \\
                Q=\frac{\sqrt{Cm}}{k}
            
    Explanation

    Latex code for the Mechanic Oscillations. I will briefly introduce the notations in this formulation.

    • : Construction of spring with constant
    • : Damping constant
    • : Periodic force
    • : Velocity
    • : Impedance of the system
    • : The quality of the system
    • Velocity resonance frequency: The frequency with minimal

    Related Documents

    Related Videos

  • Electric oscillations

    Equation


    Latex Code
                \text{Impedance} \\
                Z=R+ix \\
                \text{Series connection} \\ 
                V=IZ, Z_{\rm tot}=\sum_i Z_i~,~~L_{\rm tot}=\sum_i L_i~,~~ \frac{1}{C_{\rm tot}}=\sum_i\frac{1}{C_i}~,~~Q=\frac{Z_0}{R}~,~~ Z=R(1+iQ\delta) \\
                \text{Parallel connection} \\
                \frac{1}{Z_{\rm tot}}=\sum_i\frac{1}{Z_i}~,~~ \frac{1}{L_{\rm tot}}=\sum_i\frac{1}{L_i}~,~~ C_{\rm tot}=\sum_i C_i~,~~Q=\frac{R}{Z_0}~,~~ Z=\frac{R}{1+iQ\delta}
            
    Explanation

    Latex code for the Electric oscillations. I will briefly introduce the notations in this formulation.

    • : Phase Angle
    • : Impedance of a Resistor
    • : Capacitor
    • : Self inductor
    • : Quality of a coil

    Related Documents

    Related Videos

  • Waves in long conductors

    Equation


    Latex Code
                 Z_0=\sqrt{\frac{dL}{dx}\frac{dx}{dC}} \\
                 v=\sqrt{\frac{dx}{dL}\frac{dx}{dC}}
            
    Explanation

    Latex code for the Waves in Long conductors. I will briefly introduce the notations in this formulation.

    • : is transmission velocity

    Related Documents

    Related Videos

  • Amplitude of a driven oscillation

    Equation


    Latex Code
                A = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}
            
    Explanation


    Related Documents

    Related Videos

  • Coupled conductors and transformers

    Equation


    Latex Code
                M_{12}=M_{21}:=M=k\sqrt{L_1L_2}=\frac{N_1\Phi_1}{I_2}=\frac{N_2\Phi_2}{I_1}\sim N_1N_2 \\
                \frac{V_1}{V_2}=\frac{I_2}{I_1}=-\frac{i\omega M}{i\omega L_2+R_{\rm load}}\approx-\sqrt{\frac{L_1}{L_2}}=-\frac{N_1}{N_2} \\
                \Phi_{12}=M_{12}I_2 \\
                \Phi_{21}=M_{21}I_1
            
    Explanation

    Latex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation.

    • : part of the flux originating from I_{2{} through coil 2, which is enclosed by coil 1
    • : coefficients of mutual induction
    • : Coupling factor

    Related Documents

    Related Videos

  • Pendulums

    Equation


    Latex Code
                T=1/f \\
                T=2\pi\sqrt{m/C} \\
                T=2\pi\sqrt{I/\tau} \\
                T=2\pi\sqrt{I/\kappa} \\
                T=2\pi\sqrt{l/g}
            
    Explanation

    Latex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation.

    • : Oscillating spring
    • : Physical pendulum
    • : Torsion pendulum
    • : Mathematical pendulum

    Related Documents

    Related Videos

  • Angular frequency for a damped oscillation

    Equation


    Latex Code
                \omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}
            
    Explanation


    Related Documents

    Related Videos

  • Displacement of a driven oscillator

    Equation


    Latex Code
                x = A\cos \left( {\omega t + \delta } \right)
            
    Explanation


    Related Documents

    Related Videos

  • Displacement of a slightly damped oscillator

    Equation


    Latex Code
                x = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)
            
    Explanation


    Related Documents

    Related Videos

  • Energy change in a damped oscillation

    Equation


    Latex Code
                \frac{{\Delta E}}{E} = - \frac{b}{m}T \\
                E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)
            
    Explanation


    Related Documents

    Related Videos

  • Energy transmitted by a harmonic wave

    Equation


    Latex Code
                \Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta t
            
    Explanation


    Related Documents

    Related Videos

  • Harmonic wave function

    Equation


    Latex Code
                y(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right] = A\sin \left[ {k(x - \upsilon t)} \right]
            
    Explanation


    Related Documents

    Related Videos

  • Kinetic energy of simple harmonic motion

    Equation


    Latex Code
                K = \frac{1}{2}kA^2 \sin ^2 \left( {\omega t + \delta } \right)
            
    Explanation


    Related Documents

    Related Videos

  • Phase constant of a driven oscillation

    Equation


    Latex Code
                \tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}
            
    Explanation


    Related Documents

    Related Videos

  • Potential energy of simple harmonic motion

    Equation


    Latex Code
                U = \frac{1}{2}kA^2 \cos ^2 \left( {\omega t + \delta } \right)
            
    Explanation


    Related Documents

    Related Videos

  • Power transmitted by a harmonic wave

    Equation


    Latex Code
                P = \frac{{dE}}{{dt}} = \frac{1}{2}\mu \omega ^2 A^2 \upsilon
            
    Explanation


    Related Documents

    Related Videos

  • Standing-wave function

    Equation


    Latex Code
                y(x,t) = A_n \cos (\omega _n t + \delta _n )\sin (k_n x)
            
    Explanation


    Related Documents

    Related Videos

  • Superposition of standing waves on a string with both ends fixed

    Equation


    Latex Code
                y(x,t) = \sum\limits_n {A_n \cos (\omega _n t + \delta _n )\sin (k_n x)}
            
    Explanation


    Related Documents

    Related Videos

  • Total energy of simple harmonic motion

    Equation


    Latex Code
                E_{Total} = \frac{1}{2}kA^2
            
    Explanation


    Related Documents

    Related Videos

  • Velocity at resonance frequency of a driven oscillator

    Equation


    Latex Code
                \upsilon = + A\omega \cos \left( {\omega t} \right) = - A\omega \sin \left( {\omega t - \frac{\pi }{2}} \right)
            
    Explanation


    Related Documents

    Related Videos

Comments

Write Your Comment

Upload Pictures and Videos