X

List of Physics Thermodynamics Formulas, Equations Latex Code

Navigation

In this blog, we will introduce most popuplar formulas in thermodynamics, Physics. We will also provide latex code of the equations. Topics include thermodynamics, heat capacity, conservation of energy, nernst's law, maxwell relations, adiabatic processes, isobaric processes, throttle processes, The Carnot Cycle, phase transitions, thermodynamic potential, ideal mixtures, thermodynamics statistical basis, etc.

    1. Thermodynamics

  • Thermodynamics Definitions

    Equation


    Latex Code
                f(x,y,z)=0 \\
                dz=\left(\frac{\partial z}{\partial x}\right)_{y}dx+\left(\frac{\partial z}{\partial y}\right)_{x}dy \\
                \left(\frac{\partial x}{\partial y}\right)_{z}\cdot\left(\frac{\partial y}{\partial z}\right)_{x}\cdot\left(\frac{\partial z}{\partial x}\right)_{y}=-1 \\
                \varepsilon^m F(x,y,z)=F(\varepsilon x,\varepsilon y,\varepsilon z) \\
                mF(x,y,z)=x\frac{\partial F}{\partial x}+y\frac{\partial F}{\partial y}+z\frac{\partial F}{\partial z}
            
    Explanation

    Latex code for the Thermodynamics Introduction. I will briefly introduce the notations in this formulation.

    • : The total differential dz
    • A homogeneous function of degree m
    • : The isochoric pressure coefficient
    • : The isothermal compressibility
    • : The isobaric volume coefficient
    • : The adiabatic compressibility
    • : The ideal gas follows

    Related Documents

    Related Videos

  • Thermal Heat Capacity

    Equation


    Latex Code
                C_p-C_V=T\left(\frac{\partial p}{\partial T}\right)_{V}\cdot\left(\frac{\partial V}{\partial T}\right)_{p}=-T\left(\frac{\partial V}{\partial T}\right)_{p}^2\left(\frac{\partial p}{\partial V}\right)_{T}\geq0 \\
                \displaystyle C_X=T\left(\frac{\partial S}{\partial T}\right)_{X} \\
                \displaystyle C_p=\left(\frac{\partial H}{\partial T}\right)_{p} \\
                \displaystyle C_V=\left(\frac{\partial U}{\partial T}\right)_{V} \\
                C_{mp}-C_{mV}=R
            
    Explanation

    Latex code for the Thermodynamics Introduction. I will briefly introduce the notations in this formulation.

    • : The specific heat at constant at X
    • : The specific heat at constant pressure
    • : The specific heat at constant volume

    Related Documents

    Related Videos

  • Conservation of Energy

    Equation


    Latex Code
                Q=\Delta U+W \\
                d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt} Q=dU+d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt}W \\
                d\hspace{-1ex}\rule[1.25ex]{2mm}{0.4pt}W=pdV \\
                Q=\Delta H+W_{\rm i}+\Delta E_{\rm kin}+\Delta E_{\rm pot}
            
    Explanation

    Latex code for the Thermodynamics Introduction. I will briefly introduce the notations in this formulation.

    • : The total added heat
    • : The work done
    • : The difference in the internal energy

    Related Documents

    Related Videos

  • Thermodynamics Nernst's law

    Equation


    Latex Code
                \lim_{T\rightarrow0}\left(\frac{\partial S}{\partial X}\right)_{T}=0
            
    Explanation

    Latex code for the Thermodynamics Nernst's law. I will briefly introduce the notations in this formulation. Absolute zero temperature cannot be reached by cooling through a finite number of steps.

    • : The total added heat
    • : The work done
    • : The difference in the internal energy

    Related Documents

    Related Videos

  • State functions Maxwell Relations

    Equation


    Latex Code
                \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}~,~~\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p}~,~~ \left(\frac{\partial p}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}~,~~\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T} \\
                TdS=C_VdT+T\left(\frac{\partial p}{\partial T}\right)_{V}dV~~\mbox{and}~~TdS=C_pdT-T\left(\frac{\partial V}{\partial T}\right)_{p}dp
    
            
    Explanation

    Latex code for the State functions Maxwell Relations. I will briefly introduce the notations in this formulation. Absolute zero temperature cannot be reached by cooling through a finite number of steps.

    • : Internal energy,
    • : Enthalpy ,
    • : Free energy,
    • : Gibbs free energy,

    Related Documents

    Related Videos

  • Reversible Adiabatic Processes

    Equation


    Latex Code
                \text{adiabatic processes} \\
                W=U_1-U_2 \\
                \text{reversible adiabatic processes} \\
                \gamma=C_p/C_V
            
    Explanation

    Latex code for the Reversible Adiabatic Processes. I will briefly introduce the notations in this formulation.


    Related Documents

    Related Videos

  • Isobaric Processes

    Equation


    Latex Code
                \text{Isobaric Processes} \\
                H_2-H_1=\int_1^2 C_pdT \\
                \text{Reversible isobaric process} \\
                H_2-H_1=Q_{\rm rev}
            
    Explanation

    Latex code for the Isobaric Processes. I will briefly introduce the notations in this formulation.


    Related Documents

    Related Videos

  • Throttle Processes

    Equation


    Latex Code
                \alpha_H=\left(\frac{\partial T}{\partial p}\right)_{H}=\frac{1}{C_p}\left[T\left(\frac{\partial V}{\partial T}\right)_{p}-V\right]
            
    Explanation

    Latex code for the Throttle Processes. The throttle process is used in refrigerators for example. I will briefly introduce the notations in this formulation.

    • : conserved quantity

    Related Documents

    Related Videos

  • The Carnot Cycle

    Equation


    Latex Code
                \eta=1-\frac{|Q_2|}{|Q_1|}=1-\frac{T_2}{T_1}:=\eta_{\rm C} \\
                \xi=\frac{|Q_2|}{W}=\frac{|Q_2|}{|Q_1|-|Q_2|}=\frac{T_2}{T_1-T_2}
            
    Explanation

    Latex code for the Carnot Cycle. The throttle process is used in refrigerators for example. I will briefly introduce the notations in this formulation.

    • : efficiency for a Carnot cycle
    • : the cold factor when process is applied in reverse order and the system performs a work -W

    Related Documents

    Related Videos

  • Phase Transitions

    Equation


    Latex Code
                \Delta S_m=S_m^\alpha - S_m^\beta=\frac{r_{\beta\alpha}}{T_0} \\
                S_m=\left(\frac{\partial G_m}{\partial T}\right)_{p} \\
                \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\
                p=p_0{\rm e}^{-r_{\beta\alpha/RT}} \\
                r_{\beta\alpha}=r_{\alpha\beta} \\
                r_{\beta\alpha}=r_{\gamma\alpha}-r_{\gamma\beta} \\
                \frac{dp}{dT}=\frac{S_m^\alpha-S_m^\beta}{V_m^\alpha-V_m^\beta}= \frac{r_{\beta\alpha}}{(V_m^\alpha-V_m^\beta)T} \\
                p=p_0{\rm e}^{-r_{\beta\alpha/RT}}
            
    Explanation

    Latex code for the Carnot Cycle. Phase transitions are isothermal and isobaric. I will briefly introduce the notations in this formulation.

    • : ideal gas one finds for the vapor line at some distance from the critical point.

    Related Documents

    Related Videos

  • Thermodynamic Potential

    Equation


    Latex Code
                dG=-SdT+Vdp+\sum_i\mu_idn_i \\
                \displaystyle\mu=\left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j} \\
                V=\sum_{i=1}^c n_i\left(\frac{\partial V}{\partial n_i}\right)_{n_j,p,T}:=\sum_{i=1}^c n_i V_i \\
                \begin{aligned} V_m&=&\sum_i x_i V_i\\ 0&=&\sum_i x_i dV_i\end{aligned}
            
    Explanation

    Latex code for the Thermodynamic Potential. I will briefly introduce the notations in this formulation.

    • : thermodynamic potential.
    • : partial volume of component i.

    Related Documents

    Related Videos

  • Ideal Mixtures

    Equation


    Latex Code
                U_{\rm mixture}=\sum_i n_i U^0_i \\ 
                H_{\rm mixture}=\sum_i n_i H^0_i \\ 
                S_{\rm mixture}=n\sum_i x_i S^0_i+\Delta S_{\rm mix} \\
                \Delta S_{\rm mix}=-nR\sum\limits_i x_i\ln(x_i)
            
    Explanation

    Latex code for the Ideal Mixtures. I will briefly introduce the notations in this formulation.

    • : one component in a second gives rise to an increase in the boiling point
    • : one component in a second gives rise to decrease of the freezing point

    Related Documents

    Related Videos

  • Thermodynamics Statistical Basis

    Equation


    Latex Code
                P=N!\prod_i\frac{g_i^{n_i}}{n_i!} \\
                n_i=\frac{N}{Z}g_i\exp\left(-\frac{W_i}{kT}\right) \\
                Z=\sum\limits_ig_i\exp(-W_i/kT) \\
                Z=\frac{V(2\pi mkT)^{3/2}}{h^3} \\
                \text{Entropy in Thermodynamic Equilibrium} \\
                S=\frac{U}{T}+kN\ln\left(\frac{Z}{N}\right)+kN\approx\frac{U}{T}+k\ln\left(\frac{Z^N}{N!}\right) \\
                \text{Ideal gas} \\
                S=kN+kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)
            
    Explanation

    Latex code for the Thermodynamics Statistical Basis. I will briefly introduce the notations in this formulation.

    • : number of possibilities
    • : number of particles
    • : number of possible energy levels
    • : g-fold degeneracy
    • : The occupation numbers in equilibrium(with the maximum value for P)
    • : State sum Z is a normalization constant
    • : one component in a second gives rise to decrease of the freezing point

    Related Documents

    Related Videos

Comments

Write Your Comment

Upload Pictures and Videos