List of Physics Wave Formulas, Equations Latex Code

rockingdingo 2023-03-26 #physics #wave


List of Physics Wave Formulas, Equations Latex Code

Navigation

In this blog, we will introduce most popuplar formulas in Wave, Physics. We will also provide latex code of the equations. Topics include Wave Equation, Plane Waves, Spherical Waves, Cylindrical Waves, The general solution of Wave Equation, The Stationary Phase Method, Green functions for the initial-value problem, Waveguides and resonating cavities, Non-linear wave equations, etc.

    1. Waves

  • Wave Equation

    Equation


    Latex Code
                \nabla^2u-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}-\frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}=0 \\
                v=f\lambda \\
                k\lambda=2\pi \\
                \omega=2\pi f \\
                v_{\rm g}=\frac{d\omega}{dk}=v_{\rm ph}+k\frac{dv_{\rm ph}}{dk}= v_{\rm ph}\left(1-\frac{k}{n}\frac{dn}{dk}\right) \\
                v=\sqrt{\kappa/\varrho}
            
    Explanation

    Latex code for the harmonic oscillations. I will briefly introduce the notations in this formulation.

    • : disturbance
    • : propagation velocity
    • : phase velocity
    • : group velocity
    • : refractive index of the medium
    • : Pressure waves in a liquid or gas, is the modulus of compression.
    • : Further for pressure waves in a gas
    • : Pressure waves in a thin solid bar with diameter
    • : Waves in a string
    • : Surface waves on a liquid, h is the depth of the liquid and \gamma the surface tension.

    Related Documents

    Related Videos

  • Plane Waves

    Equation


    Latex Code
                u(\vec{x},t)=2^n\hat{u}\cos(\omega t)\sum_{i=1}^n\sin(k_ix_i) \\
                u(\vec{x},t)=\hat{u}\cos(\vec{k}\cdot\vec{x}\pm\omega t+\varphi) \\
                \frac{f}{f_0}=\frac{v_{\rm f}-v_{\rm obs}}{v_{\rm f}}
            
    Explanation

    Latex code for the harmonic oscillations. I will briefly introduce the notations in this formulation.

    • : harmonic plane wave is defined as u(x,t)
    • : Doppler effect

    Related Documents

    Related Videos

  • Spherical Waves

    Equation


    Latex Code
                \frac{1}{v^2}\frac{\partial^2 (ru)}{\partial t^2}-\frac{\partial^2 (ru)}{\partial r^2}=0 \\
                u(r,t)=C_1\frac{f(r-vt)}{r}+C_2\frac{g(r+vt)}{r}
            
    Explanation

    When the wave is spherically symmetric, the homogeneous wave equation is given by:Latex code for the Spherical Waves. I will briefly introduce the notations in this formulation.


    Related Documents

    Related Videos

  • Cylindrical Waves

    Equation


    Latex Code
                \frac{1}{v^2}\frac{\partial^2 u}{\partial t^2}-\frac{1}{r}\frac{\partial }{\partial r}\left(r\frac{\partial u}{\partial r}\right)=0 \\
                u(r,t)=\frac{\hat{u}}{\sqrt{r}}\cos(k(r\pm vt))
            
    Explanation

    When the wave is cylindrical symmetry, the homogeneous wave equation becomes as above. This is a Bessel equation, with solutions that can be written as Hankel functions. For sufficient large values of r.


    Related Documents

    Related Videos

  • The general solution of Wave Equation in one dimension

    Equation


    Latex Code
                \frac{\partial^2 u(x,t)}{\partial t^2}=\sum_{m=0}^{N}\left(b_m\frac{\partial ^m}{\partial x^m}\right)u(x,t) \\ 
                u(x,t)=\int\limits_{-\infty}^{\infty}\left(a(k){\rm e}^{i(kx-\omega_1(k)t)}+ b(k){\rm e}^{i(kx-\omega_2(k)t)}\right)dk \\
                u(x,t)=A{\rm e}^{i(kx-\omega t)} \\
                \omega_j=\omega_j(k)
            
    Explanation

    The general solution of is given by above.


    Related Documents

    Related Videos

  • The stationary phase method

    Equation


    Latex Code
                \int\limits_{-\infty}^\infty a(k){\rm e}^{i(kx-\omega(k)t)}dk\approx \sum_{i=1}^{N}\sqrt{\frac{2\pi}{\frac{d^2\omega(k_i)}{dk_i^2}}} \exp\left[-i\mbox{$\frac{1}{4}$}\pi+i(k_ix-\omega(k_i)t)\right]
            
    Explanation


    Related Documents

    Related Videos

  • Green functions for the initial-value problem

    Equation


    Latex Code
                u(x,t)=\int\limits_{-\infty}^\infty f(x')Q(x,x',t)dx'+ \int\limits_{-\infty}^\infty g(x')P(x,x',t)dx' \\
                \begin{aligned} Q(x,x',t)&=&\frac{1}{2} [\delta(x-x'-vt)+\delta(x-x'+vt)]\\ P(x,x',t)&=& \left\{\begin{array}{ll} \displaystyle \frac{1}{2v}&~~~\mbox{if}~~|x-x'|vt \end{array}\right.\end{aligned} \\
                \displaystyle Q(x,x',t)=\frac{\partial P(x,x',t)}{\partial t}
            
    Explanation


    Related Documents

    Related Videos

  • Waveguides and resonating cavities

    Equation


    Latex Code
                \begin{array}{ll} \vec{n}\cdot(\vec{D}_2-\vec{D}_1)=\sigma~~&~~\vec{n}\times(\vec{E}_2-\vec{E}_1)=0\\ \vec{n}\cdot(\vec{B}_2-\vec{B}_1)=0~~&~~\vec{n}\times(\vec{H}_2-\vec{H}_1)=\vec{K} \end{array} \\
                \vec{E}(\vec{x},t)=\vec{\cal E}(x,y){e}^{i(kz-\omega t)} \\ 
                \vec{B}(\vec{x},t)=\vec{\cal{B}}(x,y){e}^{i(kz-\omega t)} \\
                \begin{array}{ll} \displaystyle {\cal B}_x=\frac{i}{\varepsilon\mu\omega^2-k^2}\left(k\frac{\partial {\cal B}_z}{\partial x}-\varepsilon\mu\omega\frac{\partial {\cal E}_z}{\partial y}\right)~~&~~ \displaystyle {\cal B}_y=\frac{i}{\varepsilon\mu\omega^2-k^2}\left(k\frac{\partial {\cal B}_z}{\partial y}+\varepsilon\mu\omega\frac{\partial {\cal E}_z}{\partial x}\right)\\ \displaystyle {\cal E}_x=\frac{i}{\varepsilon\mu\omega^2-k^2}\left(k\frac{\partial {\cal E}_z}{\partial x}+\varepsilon\mu\omega\frac{\partial {\cal B}_z}{\partial y}\right)~~&~~ \displaystyle {\cal E}_y=\frac{i}{\varepsilon\mu\omega^2-k^2}\left(k\frac{\partial {\cal E}_z}{\partial y}-\varepsilon\mu\omega\frac{\partial {\cal B}_z}{\partial x}\right) \end{array}
            
    Explanation


    Related Documents

    Related Videos

  • Non-linear wave equations

    Equation


    Latex Code
                \frac{d^2x}{dt^2}-\varepsilon\omega_0(1-\beta x^2)\frac{dx}{dt}+\omega_0^2x=0 \\
                \frac{d}{dt}\left\{\frac{1}{2}\left(\frac{dx}{dt}\right)^2+\frac{1}{2} \omega_0^2x^2\right\}= \varepsilon\omega_0(1-\beta x^2)\left(\frac{dx}{dt}\right)^2 \\
                \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-\underbrace{au\frac{\partial u}{\partial x}}_{\rm non-lin}+ \underbrace{b^2\frac{\partial ^3u}{\partial x^3}}_{\rm dispersive}=0 \\
                u(x-ct)=\frac{-d}{\cosh^2(e(x-ct))}
            
    Explanation


    Related Documents

    Related Videos