• Cheatsheet of Latex Code for Most Popular Machine Learning Equations

    rockingdingo 2024-05-19 #GAN #VAE #KL-Divergence #Wasserstein #Mahalanobis

    In this blog, we will summarize the latex code for most popular machine learning equations, including multiple distance measures, generative models, etc. There are various distance measurements of different data distribution, including KL-Divergence, JS-Divergence, Wasserstein Distance(Optimal Transport), Maximum Mean Discrepancy(MMD) and so on. We will provide the latex code for machine learning models in the following sections. We will also provide latex code of Generative Adversarial Networks(GAN), Variational AutoEncoder(VAE), Diffusion Models(DDPM) for generative models in the second section.

    READ MORE
  • Latex Code for Diffusion Models Equations

    rockingdingo 2022-09-18 #Diffusion #VAE #GAN #Generative Models

    In this blog, we will summarize the latex code of equations for Diffusion Models, which are among the top-performing generative models, including GAN, VAE and flow-based models. The basic idea of diffusion models are to inject random noise to the feature vector in the forward process as markov chain models, and in the reverse process gradualy reconstruct the feature vector for generation. See below blogpost as reference for more details: Weng, Lilian. (Jul 2021). What are diffusion models? Lilâ??Log. lilianweng.github.io/posts/2021-07-11-diffusion-models/

    READ MORE