A Study of First-Order Methods with a Deterministic Relative-Error Gradient Oracle
Nadav Hallak, Kfir Yehuda Levy
This paper studies the theoretical guarantees of the classical projected gradient and conditional gradient methods applied to constrained optimization problems with biased relative-error gradient oracles. These oracles are used in various settings, such as distributed optimization systems or derivative-free optimization, and are particularly common when gradients are compressed, quantized, or estimated via finite differences computations. Several settings are investigated: Optimization over the box with a coordinate-wise erroneous gradient oracle, optimization over a general compact convex set, and three more specific scenarios. Convergence guarantees are established with respect to the relative-error magnitude, and in particular, we show that the conditional gradient is invariant to relative-error when applied over the box with a coordinate-wise erroneous gradient oracle, and the projected gradient maintains its convergence guarantees when optimizing a nonconvex objective function.