Adversarial Training of Self-supervised Monocular Depth Estimation against Physical-World Attacks
Zhiyuan Cheng,James Chenhao Liang,Guanhong Tao,Dongfang Liu,Xiangyu Zhang
Monocular Depth Estimation (MDE) is a critical component in applications such as autonomous driving. There are various attacks against MDE networks. These attacks, especially the physical ones, pose a great threat to the security of such systems. Traditional adversarial training method requires ground-truth labels and hence cannot be directly applied to self-supervised MDE that does not have depth ground truth. Some self-supervised model hardening technique (e.g., contrastive learning) ignores the domain knowledge of MDE and can hardly achieve optimal performance. In this work, we propose a novel adversarial training method for self-supervised MDE models based on view synthesis without using the depth ground truth. We improve adversarial robustness against physical-world attacks using $L_0$-norm-bounded perturbation in training. We compare our method with supervised learning-based and contrastive learning-based methods that are tailored for MDE. Results on two representative MDE networks show that we achieve better robustness against various adversarial attacks with nearly no benign performance degradation.