Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration

Edward Johns,Edward Johns

We introduce a simple new method for visual imitation learning, which allows a novel robot manipulation task to be learned from a single human demonstration, without requiring any prior knowledge of the object being interacted with. Our method models imitation learning as a state estimation problem, with the state defined as the end-effector’s pose at the point where object interaction begins, as ...