Diffusion Posterior Sampling is Computationally Intractable
Shivam Gupta, Ajil Jalal, Aditya Parulekar, Eric Price, Zhiyang Xun
Diffusion models are a remarkably effective way of learning and sampling from a distribution $p(x)$. In posterior sampling, one is also given a measurement model $p(y \mid x)$ and a measurement $y$, and would like to sample from $p(x \mid y)$. Posterior sampling is useful for tasks such as inpainting, super-resolution, and MRI reconstruction, so a number of recent works have given algorithms to heuristically approximate it; but none are known to converge to the correct distribution in polynomial time. In this paper we show that posterior sampling is computationally intractable: under the most basic assumption in cryptography—that one-way functions exist—there are instances for which every algorithm takes superpolynomial time, even though unconditional sampling is provably fast. We also show that the exponential-time rejection sampling algorithm is essentially optimal under the stronger plausible assumption that there are one-way functions that take exponential time to invert.