GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation

Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, Jiaya Jia

In this paper, we propose Geometric Neural Network (GeoNet) to jointly predict depth and surface normal maps from a single image. Building on top of two-stream CNNs, our GeoNet incorporates geometric relation between depth and surface normal via the new depth-to-normal and normal- to-depth networks. Depth-to-normal network exploits the least square solution of surface normal from depth and im- proves its quality with a residual module. Normal-to-depth network, contrarily, refines the depth map based on the con- straints from the surface normal through a kernel regression module, which has no parameter to learn. These two net- works enforce the underlying model to efficiently predict depth and surface normal for high consistency and corre- sponding accuracy. Our experiments on NYU v2 dataset verify that our GeoNet is able to predict geometrically con- sistent depth and normal maps. It achieves top performance on surface normal estimation and is on par with state-of-the- art depth estimation methods.