Hierarchical Model-Based Imitation Learning for Planning in Autonomous Driving

Eli Bronstein,Mark Palatucci,Dominik Notz,Brandyn White,Alex Kuefler,Yiren Lu,Supratik Paul,Payam Nikdel,Paul Mougin,Hongge Chen,Justin Fu,Austin Abrams,Punit Shah,Evan Racah,Benjamin Frenkel,Shimon Whiteson,Dragomir Anguelov,Eli Bronstein,Mark Palatucci,Dominik Notz,Brandyn White,Alex Kuefler,Yiren Lu,Supratik Paul,Payam Nikdel,Paul Mougin,Hongge Chen,Justin Fu,Austin Abrams,Punit Shah,Evan Racah,Benjamin Frenkel,Shimon Whiteson,Dragomir Anguelov

We demonstrate the first large-scale application of model-based generative adversarial imitation learning (MGAIL) to the task of dense urban self-driving. We augment standard MGAIL using a hierarchical model to enable generalization to arbitrary goal routes, and measure performance using a closed-loop evaluation framework with simulated interactive agents. We train policies from expert trajectorie...