Puff-Net: Efficient Style Transfer with Pure Content and Style Feature Fusion Network
Sizhe Zheng, Pan Gao, Peng Zhou, Jie Qin
Style transfer aims to render an image with the artistic features of a style image while maintaining the original structure. Various methods have been put forward for this task but some challenges still exist. For instance it is difficult for CNN-based methods to handle global information and long-range dependencies between input images for which transformer-based methods have been proposed. Although transformer can better model the relationship between content and style images they require high-cost hardware and time-consuming inference. To address these issues we design a novel transformer model that includes only encoders thus significantly reducing the computational cost. In addition we also find that existing style transfer methods may lead to images under-stylied or missing content. In order to achieve better stylization we design a content feature extractor and a style feature extractor. Then we can feed pure content and style images into the transformer. Finally we propose a network model termed Puff-Net i.e. efficient style transfer with pure content and style feature fusion network. Through qualitative and quantitative experiments we demonstrate the advantages of our model compared to state-of-the-art ones in the literature. The code is availabel at https://github.com/ZszYmy9/Puff-Net.