Recursive Social Behavior Graph for Trajectory Prediction
Jianhua Sun, Qinhong Jiang, Cewu Lu
Social interaction is an important topic in human trajectory prediction to generate plausible paths. In this paper, we present a novel insight of group-based social interaction model to explore relationships among pedestrians. We recursively extract social representations supervised by group-based annotations and formulate them into a social behavior graph, called Recursive Social Behavior Graph. Our recursive mechanism explores the representation power largely. Graph Convolutional Neural Network then is used to propagate social interaction information in such a graph. With the guidance of Recursive Social Behavior Graph, we surpass state-of-the-art methods on ETH and UCY dataset for 11.1% in ADE and 10.8% in FDE in average, and successfully predict complex social behaviors.