Residual Learning in Diffusion Models

Junyu Zhang, Daochang Liu, Eunbyung Park, Shichao Zhang, Chang Xu

Diffusion models (DMs) have achieved remarkable generative performance particularly with the introduction of stochastic differential equations (SDEs). Nevertheless a gap emerges in the model sampling trajectory constructed by reverse-SDE due to the accumulation of score estimation and discretization errors. This gap results in a residual in the generated images adversely impacting the image quality. To remedy this we propose a novel residual learning framework built upon a correction function. The optimized function enables to improve image quality via rectifying the sampling trajectory effectively. Importantly our framework exhibits transferable residual correction ability i.e. a correction function optimized for one pre-trained DM can also enhance the sampling trajectory constructed by other different DMs on the same dataset. Experimental results on four widely-used datasets demonstrate the effectiveness and transferable capability of our framework.