AI & Robotic Top Conferences and Journals

  • Introduction

    Conference ICLR2021 accepted paper complete List. Top ranking conferences for AI and Robotics communities. Total Accepted Paper Count 2

    ICLR2021 ACCEPTED PAPER LIST

  • Kwangjun Ahn, Sebastien Bubeck, Sinho Chewi, Yin Tat Lee, Felipe Suarez, Yi Zhang

    Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability"' or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn ``threshold-like'' neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.

  • Yan Dai, Kwangjun Ahn, Suvrit Sra

    Sharpness-Aware Minimization (SAM) is a recently proposed gradient-based optimizer (Foret et al., ICLR 2021) that greatly improves the prediction performance of deep neural networks. Consequently, there has been a surge of interest in explaining its empirical success. We focus, in particular, on understanding the role played by normalization, a key component of the SAM updates. We theoretically and empirically study the effect of normalization in SAM for both convex and non-convex functions, revealing two key roles played by normalization: i) it helps in stabilizing the algorithm; and ii) it enables the algorithm to drift along a continuum (manifold) of minima -- a property identified by recent theoretical works that is the key to better performance. We further argue that these two properties of normalization make SAM robust against the choice of hyper-parameters, supporting the practicality of SAM. Our conclusions are backed by various experiments.