AI & Robotic Top Conferences and Journals

  • Introduction

    Conference ICML2022 accepted paper complete List. Top ranking conferences for AI and Robotics communities. Total Accepted Paper Count 2

    ICML2022 ACCEPTED PAPER LIST

  • Ali Zeynali, Shahin Kamali, Mohammad Hajiesmaili

    We present the first learning-augmented data structure for implementing dictionaries with optimal consistency and robustness. Our data structure, named RobustSL, is a Skip list augmented by predictions of access frequencies of elements in a data sequence. With proper predictions, RobustSL has optimal consistency (achieves static optimality). At the same time, it maintains a logarithmic running time for each operation, ensuring optimal robustness, even if predictions are generated adversarially. Therefore, RobustSL has all the advantages of the recent learning-augmented data structures of Lin, Luo, and Woodruff (ICML 2022) and Cao et al. (arXiv 2023), while providing robustness guarantees that are absent in the previous work. Numerical experiments show that RobustSL outperforms alternative data structures using both synthetic and real datasets.

  • Anders Aamand, Justin Chen, Allen Liu, Sandeep Silwal, Pattara Sukprasert, Ali Vakilian, Fred Zhang

    Individual preference (IP) stability, introduced by Ahmadi et al. (ICML 2022), is a natural clustering objective inspired by stability and fairness constraints. A clustering is $\alpha$-IP stable if the average distance of every data point to its own cluster is at most $\alpha$ times the average distance to any other cluster. Unfortunately, determining if a dataset admits a $1$-IP stable clustering is NP-Hard. Moreover, before this work, it was unknown if an $o(n)$-IP stable clustering always exists, as the prior state of the art only guaranteed an $O(n)$-IP stable clustering. We close this gap in understanding and show that an $O(1)$-IP stable clustering always exists for general metrics, and we give an efficient algorithm which outputs such a clustering. We also introduce generalizations of IP stability beyond average distance and give efficient near optimal algorithms in the cases where we consider the maximum and minimum distances within and between clusters.