Arithmetic and Geometric Progressions
Tags: #math #arithmetic #geometric #progressionsEquation
$$S_{n}=a+(a+d)+(a+2d)+...+[a+(n-1)d]=\frac{n}{2}[2a+(n-1)d] \\ S_{n}=a+ar+ar^{2}+...+ar^{n-1}=a\frac{1-r^{n}}{1-r}$$Latex Code
S_{n}=a+(a+d)+(a+2d)+...+[a+(n-1)d]=\frac{n}{2}[2a+(n-1)d] \\ S_{n}=a+ar+ar^{2}+...+ar^{n-1}=a\frac{1-r^{n}}{1-r}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
Reply