Bending of light Snell's law

Tags: #physics #optics #Snell's law

Equation

$$n_i\sin(\theta_i)=n_t\sin(\theta_t) \\ \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\ n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\ v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2)) $$

Latex Code

                                 n_i\sin(\theta_i)=n_t\sin(\theta_t) \\
            \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\
            n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\
            v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2))

                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            n_i\sin(\theta_i)=n_t\sin(\theta_t) \\
            \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\
            n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\
            v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2))
        

Explanation

Latex code for the Bending of light, Snell's law. I will briefly introduce the notations in this formulation.

  • : refractive index of the material
  • : electron density
  • : oscillator strength

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos