Bending of light Snell's law
Tags: #physics #optics #Snell's lawEquation
$$n_i\sin(\theta_i)=n_t\sin(\theta_t) \\ \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\ n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\ v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2)) $$Latex Code
n_i\sin(\theta_i)=n_t\sin(\theta_t) \\ \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\ n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\ v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2))
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
n_i\sin(\theta_i)=n_t\sin(\theta_t) \\ \frac{n_2}{n_1}=\frac{\lambda_1}{\lambda_2}=\frac{v_1}{v_2} \\ n^2=1+\frac{n_{\rm e}e^2}{\varepsilon_0m}\sum_j\frac{f_j}{\omega_{0,j}^2-\omega^2-i\delta\omega} \\ v_{\rm g}=c/(1+(n_{\rm e}e^2/2\varepsilon_0m\omega^2))
Explanation
Latex code for the Bending of light, Snell's law. I will briefly introduce the notations in this formulation.
- : refractive index of the material
- : electron density
- : oscillator strength
Reply