Bessel Equation
Tags: #math #bessel equationEquation
$$x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\ J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}$$Latex Code
x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\ J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
- Solutions of Bessel equations are Bessel functions .
Related Documents
- Mathematical Formula Handbook
- Brown Univ.: MATHEMATICA TUTORIAL for the First Course. Part V: Bessel equation
Reply