Bessel Equation

Tags: #math #bessel equation

Equation

$$x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\ J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}$$

Latex Code

                                 x^{2}\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}+x\frac{\mathrm{d} y}{\mathrm{d} x}+(x^{2}-m^{2})y=0 \\
            J_{m}(x)=\sum^{\infty}_{k=0}\frac{(-1)^{k} (x/2)^{m+2k}}{k!(m+k)!}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Explanation

  • Solutions of Bessel equations are Bessel functions .

Related Documents

Comments

Write Your Comment

Upload Pictures and Videos