Beta Distribution

Tags: #Math #Statistics

Equation

$$X \sim Beta(\alpha,\beta), \\ f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\ B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\ F(x)=I_{x}(\alpha+\beta)$$

Latex Code

                                 X \sim Beta(\alpha,\beta), \\
            f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\
            B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\
            F(x)=I_{x}(\alpha+\beta)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$X \sim Beta(\alpha,\beta)$$ $$f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$ $$B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$ $$F(x)=I_{x}(\alpha+\beta)$$

Latex Code

            X \sim Beta(\alpha,\beta), \\
            f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \\
            B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \\
            F(x)=I_{x}(\alpha+\beta)
        

Explanation

Latex code for the Beta Distribution.

  • Shape parameter: $$\alpha, \beta$$
  • PDF for Beta Distribution: $$f(x)=\frac{ x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$
  • Beta Function: $$B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
  • CDF for Beta Distribution, which is the regularized incomplete beta function: $$F(x)=I_{x}(\alpha+\beta)$$
  • Mean for Beta Distribution: $$E[X] = \frac{\alpha}{\alpha+\beta}$$
  • Variance for Beta Distribution: $$var[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $$

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos