Binomial Distribution
Tags: #Math #StatisticsEquation
$$X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq$$Latex Code
X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
X \sim B(n,p) \\f(x)=\begin{pmatrix}n\\ x\end{pmatrix}p^{x}q^{n-x}=C^{k}_{n}p^{x}q^{n-x},q=1-p\\\text{Binominal Mean}\ \mu=np\\\text{Binominal Variance}\ \sigma^2=npq
Explanation
The binomial distribution measures in total n independent trials, the probability that x trials in total n trials are positive (like the getting positive of flipping a coin). In this formulation, f(x) denotes the probability that x positive trials are observed in n independent trials. p denote the probability that positive is observed in each single trial. q denotes the negative is observed, which equals to 1-p.
Reply