Binomial Expansion

Tags: #math #binomial #expansion

Equation

$$(1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+...+ C^{r}_{n}x^{r} +...+x^{n} \\ C^{r}_{n}=\frac{n!}{r!(n-r)!}$$

Latex Code

                                 (1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+...+ C^{r}_{n}x^{r} +...+x^{n} \\ C^{r}_{n}=\frac{n!}{r!(n-r)!}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Explanation

  • If n is a positive integer the series terminates, the term is . is combination symbol, which denotes the number of different ways in which an unordered sample of r objects can be selected from a set of n objects without replacement.

Related Documents

Comments

Write Your Comment

Upload Pictures and Videos