Binomial Expansion
Tags: #math #binomial #expansionEquation
$$(1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+...+ C^{r}_{n}x^{r} +...+x^{n} \\ C^{r}_{n}=\frac{n!}{r!(n-r)!}$$Latex Code
(1+x)^{n}=1+nx+\frac{n(n-1)}{2!}x^{2}+...+ C^{r}_{n}x^{r} +...+x^{n} \\ C^{r}_{n}=\frac{n!}{r!(n-r)!}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
- If n is a positive integer the series terminates, the term is . is combination symbol, which denotes the number of different ways in which an unordered sample of r objects can be selected from a set of n objects without replacement.
Reply