Black Body Radiation
Tags: #physics #quantum #Black Body RadiationEquation
$$w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\ P=A\sigma T^4 \\ T\lambda_{\rm max}=k_{\rm W}$$Latex Code
w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\ P=A\sigma T^4 \\ T\lambda_{\rm max}=k_{\rm W}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\ P=A\sigma T^4 \\ T\lambda_{\rm max}=k_{\rm W}
Explanation
Latex code for the Black Body Radiation. Planck’s law for the energy distribution for the radiation of a black body is listed above. I will briefly introduce the notations in this formulation.
- : Stefan-Boltzmann's law for the total power density
- : Wien's law for the maximum
Reply