Black Body Radiation

Tags: #physics #quantum #Black Body Radiation

Equation

$$w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\ P=A\sigma T^4 \\ T\lambda_{\rm max}=k_{\rm W}$$

Latex Code

                                 w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ 
            w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\
            P=A\sigma T^4 \\
            T\lambda_{\rm max}=k_{\rm W}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            w(f)=\frac{8\pi hf^3}{c^3}\frac{1}{{\rm e}^{hf/kT}-1} \\ 
            w(\lambda)=\frac{8\pi hc}{\lambda^5}\frac{1}{{\rm e}^{hc/\lambda kT}-1} \\
            P=A\sigma T^4 \\
            T\lambda_{\rm max}=k_{\rm W}
        

Explanation

Latex code for the Black Body Radiation. Planck’s law for the energy distribution for the radiation of a black body is listed above. I will briefly introduce the notations in this formulation.

  • : Stefan-Boltzmann's law for the total power density
  • : Wien's law for the maximum

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos