Bonds and Interest Rates

Tags: #Financial #Economics

Equation

$$P(0, S) = \frac{1}{[1 + r(0, s)]^{s}} \text{or} e^{-r(0,s)s} \\ \text{Forward bond price} \\ F_{t,T}[P(T, T+s)] = \frac{P(t, T+s)}{P(t, T)} \\ P(t, T)[1 + r_{t}(T, T+s)]^{-s} = P(t, T+s)$$

Latex Code

                                 P(0, S) = \frac{1}{[1 + r(0, s)]^{s}} \text{or} e^{-r(0,s)s} \\
\text{Forward bond price} \\
F_{t,T}[P(T, T+s)] = \frac{P(t, T+s)}{P(t, T)} \\
P(t, T)[1 + r_{t}(T, T+s)]^{-s} = P(t, T+s)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            P(0, S) = \frac{1}{[1 + r(0, s)]^{s}} \text{or} e^{-r(0,s)s} \\
            \text{Forward bond price} \\
            F_{t,T}[P(T, T+s)] = \frac{P(t, T+s)}{P(t, T)} \\
            P(t, T)[1 + r_{t}(T, T+s)]^{-s} = P(t, T+s)
        

Explanation

Latex code for the Bonds and Interest Rates. The price of an s-year zero is P(0, S). The forward bond price formula is calculated as . And the non-continuous annualized rate is .

  • : Price of an s-year zero.
  • : Forward Bond Price
  • : Non-continuous annualized rate

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos