Call and Put Price Bounds

Tags: #Financial #Economics

Equation

$$(F^{P}_{t,T}(S) - Ke^{-r(T-t)})_{+} \le c(S_{t},K,t,T) \le F^{P}_{t,T}(S) \\ (Ke^{-r(T-t)} - F^{P}_{t,T}(S))_{+} \le p(S_{t},K,t,T) \le Ke^{-r(T-t)} \\ c(S_{t},K,t,T) \le C(S_{t},K,t,T) \le S_{t} \\ p(S_{t},K,t,T) \le P(S_{t},K,t,T) \le K$$

Latex Code

                                 (F^{P}_{t,T}(S) - Ke^{-r(T-t)})_{+} \le c(S_{t},K,t,T) \le F^{P}_{t,T}(S) \\
(Ke^{-r(T-t)} - F^{P}_{t,T}(S))_{+} \le p(S_{t},K,t,T) \le Ke^{-r(T-t)} \\ c(S_{t},K,t,T) \le C(S_{t},K,t,T) \le S_{t} \\
p(S_{t},K,t,T) \le P(S_{t},K,t,T) \le K
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            (F^{P}_{t,T}(S) - Ke^{-r(T-t)})_{+} \le c(S_{t},K,t,T) \le F^{P}_{t,T}(S) \\
            (Ke^{-r(T-t)} - F^{P}_{t,T}(S))_{+} \le p(S_{t},K,t,T) \le Ke^{-r(T-t)} \\
            c(S_{t},K,t,T) \le C(S_{t},K,t,T) \le S_{t} \\
            p(S_{t},K,t,T) \le P(S_{t},K,t,T) \le K
        

Explanation

Latex code for the Calls and Puts Arbitrage. The following equations give the bounds on the prices of European calls and puts. Note that the lower bounds are no less than zero. We can also compare the prices of European and American options using the following inequalities.

  • : European Call Option Price
  • : European Put Option Price
  • : American Call Option Price
  • : American Put Option Price

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos