Calls and Puts Arbitrage

Tags: #Financial #Economics

Equation

$$K_{1} < K_{2} < K_{3} \\ K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\ \lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}$$

Latex Code

                                 K_{1} < K_{2} < K_{3} \\
K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\
\lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            K_{1} < K_{2} < K_{3} \\
            K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\
            \lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}
        

Explanation

Latex code for the Calls and Puts Arbitrage. Three different options have strike prices K1, K2, K3 and K1 < K2 < K3 holds. An important formula for determining arbitrage opportunities comes from the following equations.

  • : Strike price of option 1
  • : Strike price of option 2
  • : Strike price of option 3

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos