Calls and Puts Arbitrage
Tags: #Financial #EconomicsEquation
$$K_{1} < K_{2} < K_{3} \\ K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\ \lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}$$Latex Code
K_{1} < K_{2} < K_{3} \\ K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\ \lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
K_{1} < K_{2} < K_{3} \\ K_{2} = \lambda K_{1} + (1 - \lambda) K_{3} \\ \lambda = \frac{K_{3} - K_{2}}{K_{3} - K_{1}}
Explanation
Latex code for the Calls and Puts Arbitrage. Three different options have strike prices K1, K2, K3 and K1 < K2 < K3 holds. An important formula for determining arbitrage opportunities comes from the following equations.
- : Strike price of option 1
- : Strike price of option 2
- : Strike price of option 3
Reply