Calls and Puts with Different Strikes

Tags: #Financial #Economics

Equation

$$K_{1} < K_{2} \\ 0 \le c(K_{1}) - c(K_{2}) \le (K_{2} - K_{1})e^{-rT} \\ 0 \le p(K_{2}) - p(K_{1}) \le (K_{2}) - K_{1})e^{-rT} \\ \frac{c(K_{1}) - c(K_{2})}{K_{2} - K_{1}} \ge \frac{c(K_{2}) - c(K_{3})}{K_{3} - K_{2}} \\ \frac{p(K_{1}) - p(K_{2})}{K_{2} - K_{1}} \le \frac{p(K_{3}) - p(K_{2})}{K_{3} - K_{2}}$$

Latex Code

                                 K_{1} < K_{2} \\
            0 \le c(K_{1}) - c(K_{2}) \le (K_{2} - K_{1})e^{-rT} \\
            0 \le p(K_{2}) - p(K_{1}) \le (K_{2}) - K_{1})e^{-rT} \\
            \frac{c(K_{1}) - c(K_{2})}{K_{2} - K_{1}} \ge \frac{c(K_{2}) - c(K_{3})}{K_{3} - K_{2}} \\
            \frac{p(K_{1}) - p(K_{2})}{K_{2} - K_{1}} \le \frac{p(K_{3}) - p(K_{2})}{K_{3} - K_{2}}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            K_{1} < K_{2} \\
            0 \le c(K_{1}) - c(K_{2}) \le (K_{2} - K_{1})e^{-rT} \\
            0 \le p(K_{2}) - p(K_{1}) \le (K_{2}) - K_{1})e^{-rT} \\
            \frac{c(K_{1}) - c(K_{2})}{K_{2} - K_{1}} \ge \frac{c(K_{2}) - c(K_{3})}{K_{3} - K_{2}} \\
            \frac{p(K_{1}) - p(K_{2})}{K_{2} - K_{1}} \le \frac{p(K_{3}) - p(K_{2})}{K_{3} - K_{2}}
        

Explanation

Latex code for the Calls and Puts with Different Strikes. For European calls and puts, with strike prices K_{1} and K_{2}, where K_{1} < K_{2}, we know the following.

  • : Call option of strike price K_{1}
  • : Call option of strike price K_{2}

American options, For three different options with strike prices K1 < K2 < K3:

  • : Call option of strike price K_{1}
  • : Call option of strike price K_{2}

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos