Cartesian to Cylindrical Coordinates
Tags: #Math #GeometryEquation
$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}$$Latex Code
\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}
Explanation
Latex code for Cartesian to Cylindrical Coordinates.
- : Cylindrical Coordinates
- : Radius
Related Documents
Related Videos
Comments
-
Praying all the hard work translates into passing this exam.
-
-
Reply