Cartesian to Cylindrical Coordinates

Tags: #Math #Geometry

Equation

$$\begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}$$

Latex Code

                                 \begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \begin{array}{*{20}c} {x = r\cos \theta } & {r = \sqrt {x^2 + y^2 } } & {} \\ {y = r\sin \theta } & {\theta = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = z} & {z = z} & {} \\ \end{array}
        

Explanation

Latex code for Cartesian to Cylindrical Coordinates.

  • : Cylindrical Coordinates
  • : Radius

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos