Cartesian to Spherical Coordinates

Tags: #Math #Geometry

Equation

$$\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}$$

Latex Code

                                 \begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{ - 1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{ - 1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}
        

Explanation

Latex code for Cartesian to Spherical Coordinates.

  • : Spherical Coordinates
  • : Radius

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos