Blog
Community
Chat
Question
Equation
Search
Review
E-Commerce
Top Brands
Compare Brands
Car
Top Brands
Compare Brands
AI Store
Top Apps
Compare Apps
Workspace
AI Courses
AIGC Chart
AI Writer
Dialogue Visualization
Agent Visualization
Equation Latex
About
Register
Login
-1
Equation Database
nlp
BLEU Bilingual Evaluation Understudy
Conditional Random Field CRF
Direct Policy Optimization DPO
Hidden Markov Model
KTO Kahneman-Tversky Optimisation Equation
LOW RANK ADAPTATION LORA
Perplexity of Language Model
RLHF Reinforcement Learning from Human Feedback
Transformer
READ MORE
machine learning
Conditional Random Field CRF
Diffusion Model Forward Process
Diffusion Model Forward Process Reparameterization
Diffusion Model Reverse Process
Diffusion Model Variational Lower Bound
Diffusion Model Variational Lower Bound Loss
Hidden Markov Model
Transformer
READ MORE
EQUATION LIST
nlp
BLEU Bilingual Evaluation Understudy
#nlp
#BLEU
#evaluation
$$ \text{BLEU}_{w}(\hat{S},S)=BP(\hat{S};S) \times \exp{\sum^{\infty}_{n=1}w_{n} \ln p_{n}(\hat{S};S)}, p_{n}(\hat{S};S)=\frac{\sum^{M}_{i=1}\sum_{s \in G_{n}(\hat{y})} \min(C(s,\hat{y}),\max_{y \in S_{i}} C(s,y))}{\sum^{M}_{i=1}\sum_{s \in G_{n}(\hat{y})}C(s, \hat{y})}, p_{n}(\hat{y};y)=\frac{\sum_{s \in G_{n}(\hat{y})} \min(C(s,\hat{y}), C(s,y))}{\sum_{s \in G_{n}(\hat{y})}C(s, \hat{y})}, BP(\hat{S};S) = e^{-(r/c-1)^{+}}$$
READ MORE
Conditional Random Field CRF
#machine learning
#nlp
$$P(y|x)=\frac{1}{Z(x)}\exp(\sum_{i,k}\lambda_{k}t_{k}(y_{i-1},y_{i},x,i))+\sum_{i,l}\mu_{l}s_{l}(y_{i},x,i)) \\ Z(x)=\sum_{y}\exp(\sum_{i,k}\lambda_{k}t_{k}(y_{i-1},y_{i},x,i))+\sum_{i,l}\mu_{l}s_{l}(y_{i},x,i))$$
READ MORE
Direct Policy Optimization DPO
#nlp
#llm
#RLHF
$$\pi_{r} (y|x) = \frac{1}{Z(x)} \pi_{ref} (y|x) \exp(\frac{1}{\beta} r(x,y) ) , r(x,y) = \beta \log \frac{\pi_{r} (y|x)}{\pi_{ref} (y|x)} + \beta \log Z(x) , p^{*}(y_{1} > y_{2} |x) = \frac{1}{1+\exp{(\beta \frac{\pi^{*} (y_{2}|x)}{\pi_{ref} (y_{2}|x)} - \beta \frac{\pi^{*} (y_{1}|x)}{\pi_{ref} (y_{1}|x)} )}} , \mathcal{L}_{DPO}(\pi_{\theta};\pi_{ref}) = -\mathbb{E}_{(x, y_{w},y_{l}) \sim D } [\log \sigma (\beta \frac{\pi_{\theta} (y_{w}|x)}{\pi_{ref} (y_{w}|x)} - \beta \frac{\pi_{\theta} (y_{l}|x)}{\pi_{ref} (y_{l}|x)} )] , \nabla \mathcal{L}_{DPO}(\pi_{\theta};\pi_{ref}) = - \beta \mathbb{E}_{(x, y_{w},y_{l}) \sim D } [ \sigma ( \hat{r}_{\theta} (x, y_{l}) - \hat{r}_{\theta} (x, y_{w})) [\nabla_{\theta} \log \pi (y_{w}|x) - \nabla_{\theta} \log \pi (y_{l}|x) ] ] , \hat{r}_{\theta} (x, y) = \beta \log (\frac{\pi_{\theta} (y|x)}{\pi_{ref} (y|x)})$$
READ MORE
Hidden Markov Model
#machine learning
#nlp
$$Q=\{q_{1},q_{2},...,q_{N}\}, V=\{v_{1},v_{2},...,v_{M}\} \\ I=\{i_{1},i_{2},...,i_{T}\},O=\{o_{1},o_{2},...,o_{T}\} \\ A=[a_{ij}]_{N \times N}, a_{ij}=P(i_{t+1}=q_{j}|i_{t}=q_{i}) \\ B=[b_{j}(k)]_{N \times M},b_{j}(k)=P(o_{t}=v_{k}|i_{t}=q_{j})$$
READ MORE
KTO Kahneman-Tversky Optimisation Equation
#nlp
#llm
#AI
$$f(\pi_\theta, \pi_\text{ref}) = \mathbb{E}_{x,y\sim\mathcal{D}}[ a_{x,y} v(r_\theta(x,y) - \mathbb{E}_{Q}[r_\theta(x, y')])] + C_\mathcal{D}$$
READ MORE
LOW RANK ADAPTATION LORA
#nlp
#llm
#RLHF
$$W_{0} + \Delta W_{0} = W_{0} + BA, h=W_{0}x + \Delta W_{0}x = W_{0}x + BAx, \text{Initialization:} A \sim N(0, \sigma^{2}), B = 0$$
READ MORE
Perplexity of Language Model
#nlp
#LLM
#metric
$$\text{PPL}(X) = \exp \{- \frac{1}{t} \sum^{t}_{i} \log p_{\theta} (x_{i} | x_{ \lt i}) \}$$
READ MORE
RLHF Reinforcement Learning from Human Feedback
#nlp
#LLM
#equation
$$p^*(y_w \succ y_l|x) = \sigma(r^*(x,y_w) - r^*(x,y_l)) $$ $$ \mathcal{L}_R(r_\phi) = \mathbb{E}_{x,y_w,y_l \sim D}[- \log \sigma(r_\phi(x, y_w) - r_\phi(x, y_l))] $$ $$ \mathbb{E}_{x \in D, y \in \pi_\theta} [r_\phi(x,y)] - \beta D_{\text{KL}}(\pi_\theta(y|x) \| \pi_{\text{ref}}(y|x)) $$
READ MORE
Transformer
#machine learning
#nlp
#gpt
$$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
READ MORE
machine learning
Conditional Random Field CRF
#machine learning
#nlp
$$P(y|x)=\frac{1}{Z(x)}\exp(\sum_{i,k}\lambda_{k}t_{k}(y_{i-1},y_{i},x,i))+\sum_{i,l}\mu_{l}s_{l}(y_{i},x,i)) \\ Z(x)=\sum_{y}\exp(\sum_{i,k}\lambda_{k}t_{k}(y_{i-1},y_{i},x,i))+\sum_{i,l}\mu_{l}s_{l}(y_{i},x,i))$$
READ MORE
Diffusion Model Forward Process
#machine learning
#diffusion
$$q(x_{t}|x_{t-1})=\mathcal{N}(x_{t};\sqrt{1-\beta_{t}}x_{t-1},\beta_{t}I) \\q(x_{1:T}|x_{0})=\prod_{t=1}^{T}q(x_{t}|x_{t-1})$$
READ MORE
Diffusion Model Forward Process Reparameterization
#machine learning
#diffusion
$$x_{t}=\sqrt{\alpha_{t}}x_{t-1}+\sqrt{1-\alpha_{t}} \epsilon_{t-1}\\=\sqrt{\alpha_{t}\alpha_{t-1}}x_{t-2} + \sqrt{1-\alpha_{t}\alpha_{t-1}} \bar{\epsilon}_{t-2}\\=\text{...}\\=\sqrt{\bar{\alpha}_{t}}x_{0}+\sqrt{1-\bar{\alpha}_{t}}\epsilon \\\alpha_{t}=1-\beta_{t}, \bar{\alpha}_{t}=\prod_{t=1}^{T}\alpha_{t}$$
READ MORE
Diffusion Model Reverse Process
#machine learning
#diffusion
$$p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod^T_{t=1} p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) \\ p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t))$$
READ MORE
Diffusion Model Variational Lower Bound
#machine learning
#diffusion
$$\begin{aligned} - \log p_\theta(\mathbf{x}_0) &\leq - \log p_\theta(\mathbf{x}_0) + D_\text{KL}(q(\mathbf{x}_{1:T}\vert\mathbf{x}_0) \| p_\theta(\mathbf{x}_{1:T}\vert\mathbf{x}_0) ) \\ &= -\log p_\theta(\mathbf{x}_0) + \mathbb{E}_{\mathbf{x}_{1:T}\sim q(\mathbf{x}_{1:T} \vert \mathbf{x}_0)} \Big[ \log\frac{q(\mathbf{x}_{1:T}\vert\mathbf{x}_0)}{p_\theta(\mathbf{x}_{0:T}) / p_\theta(\mathbf{x}_0)} \Big] \\ &= -\log p_\theta(\mathbf{x}_0) + \mathbb{E}_q \Big[ \log\frac{q(\mathbf{x}_{1:T}\vert\mathbf{x}_0)}{p_\theta(\mathbf{x}_{0:T})} + \log p_\theta(\mathbf{x}_0) \Big] \\ &= \mathbb{E}_q \Big[ \log \frac{q(\mathbf{x}_{1:T}\vert\mathbf{x}_0)}{p_\theta(\mathbf{x}_{0:T})} \Big] \\ \text{Let }L_\text{VLB} &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \Big[ \log \frac{q(\mathbf{x}_{1:T}\vert\mathbf{x}_0)}{p_\theta(\mathbf{x}_{0:T})} \Big] \geq - \mathbb{E}_{q(\mathbf{x}_0)} \log p_\theta(\mathbf{x}_0) \end{aligned}$$
READ MORE
Diffusion Model Variational Lower Bound Loss
#machine learning
#diffusion
$$\begin{aligned} L_\text{VLB} &= L_T + L_{T-1} + \dots + L_0 \\ \text{where } L_T &= D_\text{KL}(q(\mathbf{x}_T \vert \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_T)) \\ L_t &= D_\text{KL}(q(\mathbf{x}_t \vert \mathbf{x}_{t+1}, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_t \vert\mathbf{x}_{t+1})) \text{ for }1 \leq t \leq T-1 \\ L_0 &= - \log p_\theta(\mathbf{x}_0 \vert \mathbf{x}_1) \end{aligned}$$
READ MORE
Hidden Markov Model
#machine learning
#nlp
$$Q=\{q_{1},q_{2},...,q_{N}\}, V=\{v_{1},v_{2},...,v_{M}\} \\ I=\{i_{1},i_{2},...,i_{T}\},O=\{o_{1},o_{2},...,o_{T}\} \\ A=[a_{ij}]_{N \times N}, a_{ij}=P(i_{t+1}=q_{j}|i_{t}=q_{i}) \\ B=[b_{j}(k)]_{N \times M},b_{j}(k)=P(o_{t}=v_{k}|i_{t}=q_{j})$$
READ MORE
Transformer
#machine learning
#nlp
#gpt
$$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
READ MORE
Category
math
physics
machine learning
nlp
cv
aigc
statistics
financial engineering
economics
cfa
Related Blogs
AI Assistant
Close
Chatbot
close
Bot
Hi ,
How can I help you today?
Send