Chi-Squared Distribution

Tags: #Math #Statistics

Equation

$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\ f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\ F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})$$

Latex Code

                                 Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\
f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\
F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k)$$ $$f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2} $$ $$F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2}) $$

Latex Code

            Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k), \\
            f(k) = \frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2}, \\
            F(k) = \frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2})
        

Explanation

Latex code for the Chi-Squared Distribution. Chi-Squared distribution describes the situation that random variable Q is the sum of k squared value of independent standard normal random variables Z_{1} to Z_{k}.

  • Chi-Squared distribution definition: $$Q = \sum^{k}_{i=1} Z^{2}_{i} \sim \chi^{2}(k)$$
  • PDF of Chi-Squared distribution: $$\frac{1}{2^{k/2} \Gamma (k/2)} x^{k/2-1} e^{-x/2} $$
  • CDF of Chi-Squared distribution: $$\frac{1}{\Gamma (k/2)} \gamma (\frac{k}{2},\frac{x}{2}) $$
  • Mean value of Chi-Squared distribution: $$k$$
  • Variance value of Chi-Squared distribution: $$2k$$

Related Documents

Related Videos

Write Your Comment

Upload Pictures and Videos