Complex Numbers

Tags: #math #complex numbers

Equation

$$z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\ z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\ zz^{*}=|z|^{2}=x^{2}+y^{2}$$

Latex Code

                                 z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\
z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\
zz^{*}=|z|^{2}=x^{2}+y^{2}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Latex Code

            z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\
            z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\
            zz^{*}=|z|^{2}=x^{2}+y^{2}
        

Explanation

  • : i denotes the complex component of a complex number.
  • : The real quantity r is the modulus of z.
  • : The angle \theta is the argument of z.
  • : The complex conjugate of z.

Related Documents

Comments

Write Your Comment

Upload Pictures and Videos