Complex Numbers
Tags: #math #complex numbersEquation
$$z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\ z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\ zz^{*}=|z|^{2}=x^{2}+y^{2}$$Latex Code
z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\ z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\ zz^{*}=|z|^{2}=x^{2}+y^{2}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Latex Code
z=x+iy=r(\cos \theta + i \sin \theta)=re^{i(\theta+2n\pi)} \\ z^{*}=x-iy=r(\cos \theta - i \sin \theta)=re^{-i\theta} \\ zz^{*}=|z|^{2}=x^{2}+y^{2}
Explanation
- : i denotes the complex component of a complex number.
- : The real quantity r is the modulus of z.
- : The angle \theta is the argument of z.
- : The complex conjugate of z.
Reply