Domain-Adversarial Neural Networks DANN

Tags: #machine learning #transfer learning

Equation

$$\min [\frac{1}{m}\sum^{m}_{1}\mathcal{L}(f(\textbf{x}^{s}_{i}),y_{i})+\lambda \max(-\frac{1}{m}\sum^{m}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{s}_{i}),1)-\frac{1}{m^{'}}\sum^{m^{'}}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{t}_{i}),0))]$$

Latex Code

                                 \min [\frac{1}{m}\sum^{m}_{1}\mathcal{L}(f(\textbf{x}^{s}_{i}),y_{i})+\lambda \max(-\frac{1}{m}\sum^{m}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{s}_{i}),1)-\frac{1}{m^{'}}\sum^{m^{'}}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{t}_{i}),0))]
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \min [\frac{1}{m}\sum^{m}_{1}\mathcal{L}(f(\textbf{x}^{s}_{i}),y_{i})+\lambda \max(-\frac{1}{m}\sum^{m}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{s}_{i}),1)-\frac{1}{m^{'}}\sum^{m^{'}}_{i=1}\mathcal{L}^{d}(o(\textbf{x}^{t}_{i}),0))]
        

Explanation

In this formulation of Domain-Adversarial Neural Networks(DANN), authors add a domain adaptation regularizer term to the original loss function of source domain. The domain adaptation regularizer term are calculated based on the H-divergence of two distributions h(X_{S}) and h(X_{T}). The adversial network aims to maximize the likelihood that the domain classifier are unable to distingush a data point belongs to source domain S or target domain T. Function o(.) is the domain regressor which learns high level representation o(X) given input X. You can check more detailed information in this paper by Hana Ajakan, Pascal Germain, et al., Domain-Adversarial Neural Networks for more details.

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos