Elliptic Cone
Tags: #Math #GeometryEquation
$$\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}$$Latex Code
\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{{\left( {x - x_0 } \right)^2 }}{{a^2 }} + \frac{{\left( {y - y_0 } \right)^2 }}{{b^2 }} = \frac{{\left( {z - z_0 } \right)^2 }}{{c^2 }}
Explanation
Latex code for Elliptic Cone.
- : Center Coordinates of Elliptic Cone
- : Length of Axis a
- : Length of Axis b
- : Length of Axis c
Reply