Fourier Transforms
Tags: #math #fourier transformsEquation
$$y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t$$Latex Code
y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
If y(x) is a function defined in the range , then the fourier transform is defined as above.
Reply