Fourier Transforms

Tags: #math #fourier transforms

Equation

$$y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t$$

Latex Code

                                 y(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{y}(\omega) e^{i\omega t} \mathrm{d} \omega \\ \hat{y}(\omega)=\int_{-\infty}^{\infty} y(t) e^{-i\omega t} \mathrm{d} t
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

If y(x) is a function defined in the range , then the fourier transform is defined as above.


Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos