Generative Adversarial Networks GAN
Tags: #machine learning #ganEquation
$$\min_{G} \max_{D} V(D,G)=\mathbb{E}_{x \sim p_{data}(x)}[\log D(x)]+\mathbb{E}_{z \sim p_{z}(z)}[\log(1-D(G(z)))]$$Latex Code
\min_{G} \max_{D} V(D,G)=\mathbb{E}_{x \sim p_{data}(x)}[\log D(x)]+\mathbb{E}_{z \sim p_{z}(z)}[\log(1-D(G(z)))]
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\min_{G} \max_{D} V(D,G)=\mathbb{E}_{x \sim p_{data}(x)}[\log D(x)]+\mathbb{E}_{z \sim p_{z}(z)}[\log(1-D(G(z)))]
Explanation
GAN latex code is illustrated above. See paper for more details Generative Adversarial Networks
Reply