Geometric Brownian Motion

Tags: #Financial #Economics

Equation

$$Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\ E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\ E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\ \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)$$

Latex Code

                                 Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\
            E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\
            E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\
            \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\
            E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\
            E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\
            \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)
        

Explanation

Latex code for the Geometric Brownian Motion.

  • : Observed value Y(t) at time stamp t
  • : Any normal random variable
  • : Drift coefficient
  • : Volatility

Related Documents

Related Videos

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Emily Wheeler
    I'm visualizing success for this test.
    2023-07-17 00:00

    Reply


    Daniel Anderson reply to Emily Wheeler
    Gooood Luck, Man!
    2023-08-12 00:00:00.0

    Reply


  • Susan Miller
    All I want is to pass this exam.
    2023-04-09 00:00

    Reply


    Kenneth Lee reply to Susan Miller
    Gooood Luck, Man!
    2023-04-20 00:00:00.0

    Reply


  • Gary Adams
    I'm burning the midnight oil to pass this test.
    2023-03-08 00:00

    Reply


    Judith Morris reply to Gary Adams
    Nice~
    2023-03-19 00:00:00.0

    Reply