Geometric Brownian Motion

Tags: #Financial #Economics

Equation

$$Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\ E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\ E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\ \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)$$

Latex Code

                                 Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\
            E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\
            E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\
            \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            Y(t) = Y(0)e^{X(t)} = Y(0)e^{[\mu t + \sigma Z(t)]} \\
            E(e^{kU}) = e^{kE(U) + \frac{1}{2}k^{2}\text{Var}(U)} \\
            E[Y^{k}(t)] = Y^{k}(0) e^{(k\mu + \frac{1}{2}k^{2}\sigma^{2})t} \\
            \ln Y(t) \sim N(\ln Y(0) + \mu t, \sigma^{2} t)
        

Explanation

Latex code for the Geometric Brownian Motion.

  • : Observed value Y(t) at time stamp t
  • : Any normal random variable
  • : Drift coefficient
  • : Volatility

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos