Geometric Brownian Motion SDEs

Tags: #Financial #Economics

Equation

$$\mathrm{d}Y(t) = \mu Y(t)dt + \sigma Y(t) \mathrm{d}Z(t) \\ \mathrm{d}[\ln Y(t)] = (\mu - \frac{\sigma^2}{2}) \mathrm{d}t + \sigma \mathrm{d}Z(t) \\ Y(t) = T(0) e^{(\mu - \frac{\sigma^2}{2})t + \sigma Z(t)}$$

Latex Code

                                 \mathrm{d}Y(t) = \mu Y(t)dt + \sigma Y(t) \mathrm{d}Z(t) \\
            \mathrm{d}[\ln Y(t)] = (\mu - \frac{\sigma^2}{2}) \mathrm{d}t + \sigma \mathrm{d}Z(t) \\
            Y(t) = T(0) e^{(\mu - \frac{\sigma^2}{2})t + \sigma Z(t)}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \mathrm{d}Y(t) = \mu Y(t)dt + \sigma Y(t) \mathrm{d}Z(t) \\
            \mathrm{d}[\ln Y(t)] = (\mu - \frac{\sigma^2}{2}) \mathrm{d}t + \sigma \mathrm{d}Z(t) \\
            Y(t) = T(0) e^{(\mu - \frac{\sigma^2}{2})t + \sigma Z(t)}
        

Explanation

Latex code for the Geometric Brownian Motion.

  • : Observed value Y(t) at time stamp t
  • : Any normal random variable
  • : Drift coefficient
  • : Volatility

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos