Geometric Distribution

Tags: #Math #Statistics

Equation

$$Pr(X=k) = (1-p)^{k-1}q, \\ f(x)=(1-p)^{k-1}q, \\ F(x)=1 - (1-p)^{[x]}$$

Latex Code

                                 Pr(X=k) = (1-p)^{k-1}q, \\
f(x)=(1-p)^{k-1}q, \\
F(x)=1 - (1-p)^{[x]}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$Pr(X=k) = (1-p)^{k-1}q$$ $$f(x)=(1-p)^{k-1}q$$ $$F(x)=1 - (1-p)^{[x]}$$

Latex Code

            Pr(X=k) = (1-p)^{k-1}q, \\
            f(x)=(1-p)^{k-1}q, \\
            F(x)=1 - (1-p)^{[x]}
        

Explanation

Latex code for the Geometric Distribution.

  • Probability parameter p means the success probability of each trial: $$p$$
  • The number of total trials until the first successful trial k: $$k$$
  • PDF for Geometric Distribution: $$f(x)=(1-p)^{k-1}q$$
  • CDF for Geometric Distribution: $$F(x)=1 - (1-p)^{[x]}$$

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos