Graph Attention Network GAT

Tags: #machine learning #graph #GNN

Equation

$$h=\{\vec{h_{1}},\vec{h_{2}},...,\vec{h_{N}}\}, \\ \vec{h_{i}} \in \mathbb{R}^{F} \\ W \in \mathbb{R}^{F \times F^{'}} \\ e_{ij}=a(Wh_{i},Wh_{j}) \\ k \in \mathcal{N}_{i},\text{ neighbourhood nodes}\\ a_{ij}=\text{softmax}_{j}(e_{ij})=\frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$

Latex Code

                                 h=\{\vec{h_{1}},\vec{h_{2}},...,\vec{h_{N}}\}, \\
            \vec{h_{i}} \in \mathbb{R}^{F} \\
            W \in \mathbb{R}^{F \times F^{'}} \\
            e_{ij}=a(Wh_{i},Wh_{j}) \\
            k \in \mathcal{N}_{i},\text{ neighbourhood nodes}\\
            a_{ij}=\text{softmax}_{j}(e_{ij})=\frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            h=\{\vec{h_{1}},\vec{h_{2}},...,\vec{h_{N}}\}, \\
            \vec{h_{i}} \in \mathbb{R}^{F} \\
            W \in \mathbb{R}^{F \times F^{'}} \\
            e_{ij}=a(Wh_{i},Wh_{j}) \\
            k \in \mathcal{N}_{i},\text{ neighbourhood nodes}\\
            a_{ij}=\text{softmax}_{j}(e_{ij})=\frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}
        

Explanation

GAT applies graph attentional layer to model the graph propagation. In each layer, the node i has attention on all the other nodes j. And the attention coefficient is calculated. For the attention calculation, only the set of neighbours nodes N_{i} of each node i contributes to the final softmax attention calculation. You can check more detailed information in this paper, GRAPH ATTENTION NETWORKS for more details.

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos