Green functions for the initial-value problem

Tags: #physics #green functions

Equation

$$u(x,t)=\int\limits_{-\infty}^\infty f(x')Q(x,x',t)dx'+ \int\limits_{-\infty}^\infty g(x')P(x,x',t)dx'$$

Latex Code

                                 u(x,t)=\int\limits_{-\infty}^\infty f(x')Q(x,x',t)dx'+ \int\limits_{-\infty}^\infty g(x')P(x,x',t)dx'
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            u(x,t)=\int\limits_{-\infty}^\infty f(x')Q(x,x',t)dx'+ \int\limits_{-\infty}^\infty g(x')P(x,x',t)dx' \\
            \begin{aligned} Q(x,x',t)&=&\frac{1}{2} [\delta(x-x'-vt)+\delta(x-x'+vt)]\\ P(x,x',t)&=& \left\{\begin{array}{ll} \displaystyle \frac{1}{2v}&~~~\mbox{if}~~|x-x'|vt \end{array}\right.\end{aligned} \\
            \displaystyle Q(x,x',t)=\frac{\partial P(x,x',t)}{\partial t}
        

Explanation


Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos