Gumbel Distribution

Tags: #Math #Statistics

Equation

$$x \sim \text{Gumbel}(\mu,\beta), \\ \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\ e^{-e^{-(x-\mu)/\beta}}$$

Latex Code

                                 x \sim \text{Gumbel}(\mu,\beta), \\
\frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\
e^{-e^{-(x-\mu)/\beta}}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation


$$x \sim \text{Gumbel}(\mu,\beta)$$ $$\frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}$$ $$e^{-e^{-(x-\mu)/\beta}}$$

Latex Code

            x \sim \text{Gumbel}(\mu,\beta), \\
            \frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}, \\
            e^{-e^{-(x-\mu)/\beta}}
        

Explanation

Latex code for the Gumbel Distribution. The Gumbel Distribution is used to model the distribution of the maximum of a number of samples of various distributions.

  • PDF of Gumbel distribution: $$\frac{1}{\beta} e^{-(z + e^{-z})}, z=\frac{x - \mu}{\beta}$$
  • CDF of Gumbel distribution: $$e^{-e^{-(x-\mu)/\beta}}$$
  • Mean value of Gumbel distribution: $$\mu +\beta\gamma$$
  • Variance value of Gumbel distribution: $$\frac{\pi^{2}}{6}\beta^{2}$$

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos