Harmonic Oscillator Quantum

Tags: #physics #quantum

Equation

$$H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\ A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ HAu_E=(E-\hbar\omega)Au_E \\ u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ E_n=( \frac{1}{2} +n)\hbar\omega$$

Latex Code

                                 H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\
            A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\
            A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\
            HAu_E=(E-\hbar\omega)Au_E \\
            u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\
            u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\
            E_n=( \frac{1}{2} +n)\hbar\omega
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\
            A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\
            A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\
            HAu_E=(E-\hbar\omega)Au_E \\
            u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\
            u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\
            E_n=( \frac{1}{2} +n)\hbar\omega
        

Explanation

Latex code for the Parity Equation. If the wavefunction is split into even and odd functions, it can be expanded into eigenfunctions of P. I will briefly introduce the notations in this formulation.

  • : Hamiltonian
  • : Raising ladder operator
  • : Lowering ladder operator
  • : Eigenfunction for holds

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos