Harmonic Oscillator Quantum
Tags: #physics #quantumEquation
$$H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\ A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ HAu_E=(E-\hbar\omega)Au_E \\ u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ E_n=( \frac{1}{2} +n)\hbar\omega$$Latex Code
H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\ A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ HAu_E=(E-\hbar\omega)Au_E \\ u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ E_n=( \frac{1}{2} +n)\hbar\omega
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
H=\frac{p^2}{2m}+\frac{1}{2} m\omega^2 x^2= \frac{1}{2} \hbar\omega+\omega A^\dagger A \\ A=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x+\frac{ip}{\sqrt{2m\omega}} \\ A^\dagger=\sqrt{\mbox{$\frac{1}{2}$}m\omega}x-\frac{ip}{\sqrt{2m\omega}} \\ HAu_E=(E-\hbar\omega)Au_E \\ u_n=\frac{1}{\sqrt{n!}}\left(\frac{A^\dagger}{\sqrt{\hbar}}\right)^nu_0 \\ u_0=\sqrt[4]{\frac{m\omega}{\pi\hbar}}\exp\left(-\frac{m\omega x^2}{2\hbar}\right) \\ E_n=( \frac{1}{2} +n)\hbar\omega
Explanation
Latex code for the Parity Equation. If the wavefunction is split into even and odd functions, it can be expanded into eigenfunctions of P. I will briefly introduce the notations in this formulation.
- : Hamiltonian
- : Raising ladder operator
- : Lowering ladder operator
- : Eigenfunction for holds
Reply