Jensen-Shannon Divergence JS-Divergence

Tags: #machine learning

Equation

$$JS(P||Q)=\frac{1}{2}KL(P||\frac{(P+Q)}{2})+\frac{1}{2}KL(Q||\frac{(P+Q)}{2})$$

Latex Code

                                 JS(P||Q)=\frac{1}{2}KL(P||\frac{(P+Q)}{2})+\frac{1}{2}KL(Q||\frac{(P+Q)}{2})
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            JS(P||Q)=\frac{1}{2}KL(P||\frac{(P+Q)}{2})+\frac{1}{2}KL(Q||\frac{(P+Q)}{2})
        

Explanation

Latex code for the Jensen-Shannon Divergence(JS-Divergence). I will briefly introduce the notations in this formulation.

  • : KL Divergence between P and Q
  • : JS Divergence between P and Q, which is the symmetric divergence metric between distribution P and Q
  • : Distribution of P(x) over x
  • : Distribution of Q(x) over x

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos