Legendre Equation
Tags: #math #legendre equationEquation
$$(1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\ P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\ P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]$$Latex Code
(1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\ P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\ P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Explanation
- Solutions of Legendre equations are Legendre polynomials
- Recursion relation:
Reply