Legendre Equation

Tags: #math #legendre equation

Equation

$$(1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\ P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\ P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]$$

Latex Code

                                 (1-x^{2})\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}-2x\frac{\mathrm{d} y}{\mathrm{d} x}+l(l+1)y=0 \\
P_{l}(x)=\frac{1}{2^{l}l!}(\frac{\mathrm{d}}{\mathrm{d} x})^{l}(x^2-1)^{l}\\
P_{l}(x)=\frac{1}{l}[(2l-1)xP_{l-1}(x)-(l-1)P_{l-2}(x)]
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction


Explanation

  • Solutions of Legendre equations are Legendre polynomials
  • Recursion relation:

Related Documents

Write Your Comment

Upload Pictures and Videos