Maximum Mean Discrepancy MMD
Tags: #machine learning #mmdEquation
$$\textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))$$Latex Code
\textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))
Explanation
Latex code for the Maximum Mean Discrepancy MMD. I will briefly introduce the notations in this formulation.
- : Superior of the discrepancy measure between two distribution.
- : Mean of probability distribution X with m data points.
- : Mean of probability distribution Y with n data points.
Reply