Maximum Mean Discrepancy MMD

Tags: #machine learning #mmd

Equation

$$\textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))$$

Latex Code

                                 \textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \textup{MMD}(\mathbb{F},X,Y):=\sup_{f \in\mathbb{F}}(\frac{1}{m}\sum_{i=1}^{m}f(x_{i}) -\frac{1}{n}\sum_{j=1}^{n}f(y_{j}))
        

Explanation

Latex code for the Maximum Mean Discrepancy MMD. I will briefly introduce the notations in this formulation.

  • : Superior of the discrepancy measure between two distribution.
  • : Mean of probability distribution X with m data points.
  • : Mean of probability distribution Y with n data points.

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos